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Abstract: Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal
framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong
to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is
gaining access to natural products, including medicinal plants. This bottleneck is heightened for
endangered species prohibited for large sample collection, even if they show biological hits. While
cultivating the pharmaceutically interesting plant species may be a solution, it is not always pos-
sible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a
potential alternative source for drug discovery. In order to overcome abiotic environmental stressors,
plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue
damage. Plants either synthesize new chemicals or increase the concentration (in most instances)
of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin,
catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs
produced under various abiotic stress conditions are plant defense chemicals and are functionally
anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids
and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primar-
ily studied in the simulated growth conditions) and their PSMs (including pharmacological activities)
from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used
search keywords: “stress-affected plants,” “plant secondary metabolites, “abiotic stress,” “climatic
influence,” “pharmacological activities,” “bioactive compounds,” “drug discovery,” and “medicinal
plants” and retrieved published literature between 1973 to 2021. This review provides an overview
of variation in bioactive phytochemical production in plants under various abiotic stress and their
potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress
on PSMs.

Keywords: secondary metabolites; climate change; drug discovery; abiotic stress

1. Introduction

Plant secondary metabolites (PSMs) are small molecules with diverse chemical struc-
tures and biological activities. Unlike primary metabolites, which are the main drivers of
essential life functions, including cell formation, PSMs are neither necessary for primary
life functions nor possess high-energy bonds [1]. However, PSMs play essential secondary
physiological and biochemical functions that ensure plant fitness and survival, particularly
concerning their interactions with the environment and coping with biotic and abiotic
stress [1]. These factors, especially abiotic stressors (nutrient deficiencies, seasons, salin-
ity, wounding, drought, light, UV radiation, temperature, greenhouse gases, and climate
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changes), cause significant perturbations in chemotypes and levels of PSMs production.
For example, plants produce more terpenoids when exposed to high temperatures [2],
and UV-B (280–315 nm) radiation induces tree foliage to produce more phenolic acids
and flavonoids as protective pigments [3,4]. Phenolics and flavonoids are well-known for
their antioxidative and anti-inflammatory properties [5–7]. Similarly, the production of
antioxidative compounds such as glutathione, g-aminobutyric acid (GABA), terpenoids,
and volatile organic compounds (VOCs) increases under elevated O3 [8].

PSMs are vital for human health and form many pharmaceutical drugs’ backbone.
Indeed, more than 25% of the existing drugs belong to PSMs [9]. The most popular PSMs-
derived drugs are morphine (isolated from Papaver somniferum), digitoxin (isolated from
Digitalis purpurea), taxol (isolated from Taxus baccata), artemisinin (isolated from Artemisia
annua) and quinine (isolated from Cinchona officinalis), vinblastine and vincristine (isolated
from Catharanthus roseus); and aspirin (first isolated as salicylic acid from Filipendula ulmaria).
Since plants exposed to various abiotic stress conditions produce many PSMs in higher
concentrations as their coping mechanism [10–12], it presents opportunities for natural
product researchers and pharmaceutical companies to explore the biochemical responses
of plants to climatic stress for developing many novel therapeutics. However, there is no
comprehensive literature review examining the scope of plants affected by abiotic stresses
for drug discovery.

Therefore, this scoping review examines recent advances related to PSMs in plants
affected by abiotic stress/or abiotic growth factors, their roles as protective phytochemicals,
and their potential for novel drug lead compounds. Although primary metabolites such
as carbohydrates [13,14] and peptides [15,16] are also known to play roles in the plant’s
defense response, our review focuses on selected classes of PSMs, including flavonoids,
terpenoids, alkaloids, saponins, tannins, and cyanogenic glycosides. We have collected
published information on plants affected by abiotic stresses (primarily studied in the
simulated growth conditions) and their PSMs (including pharmacological activities) from
PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites using
the following keywords: “stress-affected plants,” “plant secondary metabolites,” “bioactive
compounds,” “abiotic stress,” “climatic influence,” “pharmacological activities,” “drug
discovery,” and “medicinal plants.” We have retrieved published literature between 1973
to 2021 (only related to PSMs produced under ex situ growth conditions), analysed the
content, and presented the information in the form of figures and tables. The chemical
structures were drawn by using ChewDraw Professional software, and each structure was
cross-checked for their correctness using ChemSpider and HMDB databases. We excluded
studies on the effects of biotic stress on PSMs.

2. Plant Secondary Metabolites and Their Biological Roles

Generally, all plants produce secondary metabolites for defense, attraction, communi-
cation, and mediating stress [17]. For example, plants produce VOCs as defense molecules,
and they are known to function as antimicrobial and insect repellent agents [18]. More than
200,000 PSMs have been identified [19], and with more than 391,000 plant species known
worldwide [20], there is space for more discoveries. Some PSMs are specific to certain re-
lated plant taxa [21], and their concentrations can vary between populations and individual
plants with plant ontogeny and tissue type [22,23]. These PSM variations can be due to
genetic variability, but their concentrations are affected by environmental abiotic factors
(growth conditions) such as those expected to intensify with climate change (e.g., heat stress,
drought, UV radiation, and O3) [24], and herbivore and pathogen attacks [25,26]. Based
on a biosynthetic pathway and chemical structure, PSMs have broadly been categorized
into three major groups: (i) terpenoids (plant volatiles, sterols, carotenoids, saponins, and
glycosides), (ii) phenolic compounds (flavonoids, phenolic acids, lignin, lignans, coumarins,
stilbenes, and tannins), and (iii) nitrogen-containing compounds (alkaloids, glucosinolates,
and cyanogenic glycosides) [27–30].
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2.1. Terpenoids

Terpenoids or isoprenoids are one of the most structurally diverse naturally occurring
PSMs, with the main skeleton consisting of five-carbon isopentyl units, called 2-methyl-
1,3-butadiene, or isoprene. Terpenes contain only isoprene units, while terpenoids have
additional functional groups, such as ketone or heterocyclic and hydroxyl rings. Based on
structural construction, terpenoids can be considered as two types, aliphatic (e.g., geraniol)
and cyclic (e.g., limonene) terpenoids. Since terpenoids contain many isoprene units, they
are divided into various groups, as described below (Figure 1):

• Monoterpenoids—two isoprene units (C-10 carbon atoms,)—e.g., linalool;
• Sesquiterpenoids—three isoprene units (C-15 carbon atoms)—e.g., β-caryophyllene;
• Diterpenoids—four isoprene units (C-20 carbon atoms)—e.g., abietic acid;
• Sesterterpenoids—five isoprene units (C-25 carbon atoms)—e.g., ophiobolin A;
• Triterpenoids—six isoprene units (C-30 carbon atoms)—e.g., ganoderic acid;
• Tetraterpenoids—eight isoprene units (C-40 carbon atoms)—e.g., α-carotene;
• Polyterpenoids—more than eight isoprene units (>C-40 carbon atoms)—e.g., trans-1,4-

polyisoprene.

Terpenoids are formed from the mevalonate pathway inside cytosol or the 2-C-methyl-
D-erythritol-4-phosphate (MEP) pathway inside the plastid [31]. The biosynthetic precur-
sors of terpenoids include geranyl diphosphate (GPP) for monoterpenes; farnesyl diphos-
phate (FPP) for sesquiterpenes; and geranylgeranyl diphosphate (GGPP) for diterpenes [32].
An in-depth discussion on terpenoids’ biosynthetic pathway and structural diversity is
covered by Aharoni et al. (2005) and Song et al. (2014) in their review [31,32]. More than
30,000 terpenes have been reported to date [33]. They are mostly phytohormones (e.g.,
gibberellins), photosynthetic pigments (e.g., phytol, carotenoids such as α-carotene and
β-carotene), and carriers (e.g., ubiquinone, plastoquinone) in the electron chain transport
systems [34,35]. The role of terpenoids is to protect plants directly (e.g., releasing phy-
toalexins after pathogen attacks) or indirectly by producing mixtures of volatile organic
compounds (VOCs) to attract carnivores of their herbivores [36]. Phytoalexins are antimi-
crobial compounds produced after microbes’ challenge plants, and it is reviewed in-depth
by González-Lamothe et al. [37]. VOCs include terpenoids (isoprene or hemiterpenoids
and monoterpenoids), alkanes, alkenes, carbonyls, alcohols, esters, ethers, and acids [18].
VOCs are involved in plant-plant or plant-insect interactions, but some terpenoids act as
lipid-soluble antioxidants inducing resistance to stress [38].

Several terpenoids have shown defensive roles against biotic and abiotic stresses in
plants. Dahham et al. (2015) [39] and Porres-Martínez et al. (2016) [40] reported antioxidant
activities of terpenes (sesquiterpene b-caryophyllene, and monoterpenes 1,8-cineole and
α-pinene, respectively), suggesting their function in overcoming abiotic-induced oxidative
stress. Terpenoids are also reported to protect plants from photodamage and oxidative stress
by supporting photorespiration [41]. Carotenoids are the best-known terpenoids involved
in photoprotection [42]. Other examples of defensive terpenes in plants are triterpene
glycosides (or saponins) such as α-tomatine in the fruits and leaves of tomatoes [43] and
avenacin in oat (Avena sativa) roots [44]. Avenacin and α-tomatine are important pre-
formed antimicrobial compounds, commonly referred to as phytoanticipins, and they have
defensive roles against microbial attacks [37]. Saponins are another group of compounds
under terpenoids with triterpenes or steroidal aglycones linked to one or more sugar
chains [45], but some saponins such as steroidal glycoalkaloids have a nitrogen atom in
their aglycone chemical structure [45,46]. Similarl to many other PSMs, the amount and
distribution of saponins in plants are influenced by season, biotic and abiotic stresses,
and plant developmental stage. For example, maximum saponin production in Phytolacca
dodecandra L’Hér. [47] and Dioscorea pseudojaponica Yamamoto [48] occurs during fruit
and tuber development to prevent fruit loss and enable seed maturation. Under stress
conditions, saponin levels in plants increase through jasmonate and salicylate signaling
pathways [45].
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2.2. Phenolic Compounds

More than 8000 phenolic compounds are reported from plants, of which half of them
are flavonoids (approximately 4000–4500 compounds) such as aglycone, glycosides, and
methylated derivatives [6,49]. Phenolics exhibit diverse structures from single aromatic
rings (e.g., in phloroglucinol, gentisic acid, ferulic acid, caffeic acid, and vanillin) to complex
polymeric structures such as in lignins (e.g., coniferyl alcohol), coumarins (e.g., scopoletin),
phenolic quinones (e.g., juglone), tannins (e.g., ellagic acid), and flavonoids [50,51]. Among
phenolic group compounds, flavonoids are the most abundant, and stilbenes and lignans
are less common.

Flavonoids are a diverse secondary metabolite group with a wide array of functions, in-
cluding protection against stress. Flavonoids comprise seven sub-groups (Figure 2) (flavones,
flavonols, flavanones, isoflavonoids, flavan-3-ols or catechins, and anthocyanins) [52,53] based
on the C-ring carbon to which B-ring is attached, and also based on the degree of oxidation
and unsaturation of their C-ring [53]. Flavones contain a double bond between positions 2
and 3 and a ketone functional group in position 4 of the C-ring. In comparison, flavonols
have a hydroxy group at position 3 of the C-ring and are sometimes glycosylated. Unlike
flavones, flavonones are saturated with a double bond between positions 2 and 3 of the C-ring.
Flavan-3-ols have a hydroxyl group in position 3 of the C-ring, but there is no double bond
between positions 2 and 3 [53]. Although the metabolic role of phenolics is not well-defined,
their protective functions in plants are attributed to their ability to scavenge free radicals
and filter harmful UV radiations [54,55]. Ferulic acid, caffeic acid, and p-coumaric acid (hy-
droxycinnamic acid derivatives) are some of the best-known UV-B attenuators in plants [56].
Flavonoids help plants adjust to extreme heat and cold [57] through increasing accumulation.
When Schulz et al. (2016) [58] analyzed the expression of flavonoids in 20 mutants of two
different Arabidopsis thaliana accessions (Col-0 and Ler) in response to freezing and cold accli-
mation (14 days at 4 ◦C), 19 mutants, which are gene-knock outs, did not exhibit flavonoid
biosynthesis, with an exception to pap1-D mutant. A similar observation of increasing con-
centrations in flavonoids (anthocyanins and flavonols) was also reported by Pastore et al.
(2017) [59] in grapevine berries, but tannins did not show any changes. The role of flavonoids
in UV protection is also supported by Bieza and Lois’ work [60], in which they have isolated
an Arabidopsis mutant tolerant to high levels of UV-B radiations. Such protective flavonoids
are reported more in plants thriving in colder climates at higher elevations and semi-arid
environments [61]. Flavonoid-based plant pigments, such as anthocyanins synthesized in the
last step of the flavonoid biosynthesis pathway under UV stress upon acylation, can absorb
UV radiation and scavenge ROS [62,63]. If not kept under control, ROS can cause direct
damage to plants through the oxidation of essential biomolecules, leading to the accumulation
of more ROS and ultimately programmed cell death [64].

Flavonoids such as quercetin can chelate transition metals (for example, Fe), con-
sequently inhibiting Fenton reaction (conversion of H2O2 to toxic OH• radical), thereby
creating a robust antioxidative environment in the plants [65]. Phenolics are also known to
play a strategic role in reproduction as frugivore attractants that promote seed dispersal
(e.g., anthocyanidins and anthocyanins such as cyanidin-3-glucoside) [66,67].
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2.3. Nitrogen-Containing Compounds
2.3.1. Alkaloids

Alkaloids are the major group of plant defense molecules that contain a nitrogen
atom(s) derived from the decarboxylation of amino acids and are known to occur in 20%
of plant species [32]. There are seven types of alkaloids based on their amino acid pre-
cursors (Figure 3). Tropane, pyrrolidine, and pyrrolizidine alkaloids are derived from
ornithine amino acid precursors; benzylisoquinoline from tyrosine amino acid precursors;
indolequinoline from tryptophane amino acid precursors; and quinolizidine and piperidine
alkaloids from lysine amino acid precursors [68]. Alkaloids are widely distributed among
plant lineages and are particularly abundant in angiosperms. Individual plant species
may contain fewer than five to more than 30 alkaloids (e.g., 74 alkaloids in Catharanthus
roseus, 54 in Strychnos toxifera, and 39 in Rauwolfia serpentina) [68,69]. Generally, a plant
family produces only one type of alkaloid, although a few families such as Solanaceae and
Rutaceae accumulate a broad spectrum of alkaloids [70]. For example, Duboisia myoporoides
R.Br. contains both a tropane alkaloid (hyoscine) and a pyridine alkaloid (nicotine) [71].
More than 20,000 alkaloids have been isolated, of which about 600 are known to be bioac-
tive [72], but the exact physiological or metabolic role of alkaloids in plants remains poorly
understood [68]. Alkaloids are best known for their defensive role as insect-herbivore
deterrents owing to their characteristic bitter taste [73]. Thus, according to Levin [69],
most alkaloid-bearing plants are found in the tropics, where intensive herbivore pressure
is present. Defensive or toxic alkaloids in plants may be produced either by the plants
themselves or by their symbiotic partners [74,75]. For example, the symbiotic endophyte
Epichloe coenophiala in tall fescue grass [Lolium arundinaceum (Schreb.) Darbysh, syn. Festuca
arundinacea (Schreb.), and Schedonorus arundinaceus (Schreb.) Dumort.) produces insecti-
cidal alkaloids, lolines, and ergot, which cause ‘fescue toxicosis’ in grazing animals [76].
Alkaloid biosynthesis in plants is genetically controlled, but environmental factors such
as light (UV), temperature, moisture, and soil nutrients also influence the type and rate of
alkaloid production [76,77].



Molecules 2022, 27, 313 7 of 31Molecules 2022, 27, x FOR PEER REVIEW 7 of 33 
 

 
Figure 3. Representative examples of seven different types of alkaloids produced in plants and 
their chemical structure. 

2.3.2. Cyanogenic Glycosides and Glucosinolates 
Other N-containing defense compound groups include cyanogenic glycosides and 

glucosinolates. These two groups are also derived from amino acid precursors and are 
significantly less diverse in their structure, with over a hundred compounds known from 
each group. Cyanogenic glycosides are reported in more than 2500 plant species [78], in-
cluding ferns, gymnosperms, and angiosperms, while glucosinolates have been reported 
only in the order Capparales and in the genus Drypetes of the Euphorbiaceae [79]. Accord-
ing to Vetter [78] and Gleadow and Moller [80], some of the widely distributed cyanogenic 
glycosides in the plant kingdom are linamarin and lotaustralin (in Compositae, Linaceae, 
Fabaceae, Papaveraceae, and Euphorbiaceae); prunasin (in Myrtaceae, Polypodiaceae, 
Rosaceae, Saxifragaceae, Scrophulariaceae, and Myoporaceae); and dhurrin (in Poaceae 
and Euphorbiaceae) (Figure 4). Important food crops such as apple (Malus domestica), apri-
cot (Prunus armeniaca), bamboo (Bambusa vulgaris), cassava (Manihot esculenta), cocoyam 
(Colocasia esculenta and Xanthosoma sagittifolium), and sorghum (Sorghum bicolor) are 
known to contain cyanogenic glycosides [81,82]. Cyanogenic glycosides and glucosin-
olates are generally higher in young leaves [83,84] and reproductive tissues [23,83–85]. 
They are toxic in higher concentrations [86], but in response to the low light, some plants 
such as tropical Prunus turneriana tend to accumulate more cyanogenic glycosides in older 
leaves. Although cyanogenic glycosides and glucosinolates in plants also respond to cli-
matic stress such as drought and increased temperatures [80,86], they are not discussed in 
the following sections of this review. 

 

Figure 3. Representative examples of seven different types of alkaloids produced in plants and their
chemical structure.

2.3.2. Cyanogenic Glycosides and Glucosinolates

Other N-containing defense compound groups include cyanogenic glycosides and
glucosinolates. These two groups are also derived from amino acid precursors and are
significantly less diverse in their structure, with over a hundred compounds known from
each group. Cyanogenic glycosides are reported in more than 2500 plant species [78],
including ferns, gymnosperms, and angiosperms, while glucosinolates have been reported
only in the order Capparales and in the genus Drypetes of the Euphorbiaceae [79]. According
to Vetter [78] and Gleadow and Moller [80], some of the widely distributed cyanogenic
glycosides in the plant kingdom are linamarin and lotaustralin (in Compositae, Linaceae,
Fabaceae, Papaveraceae, and Euphorbiaceae); prunasin (in Myrtaceae, Polypodiaceae,
Rosaceae, Saxifragaceae, Scrophulariaceae, and Myoporaceae); and dhurrin (in Poaceae
and Euphorbiaceae) (Figure 4). Important food crops such as apple (Malus domestica),
apricot (Prunus armeniaca), bamboo (Bambusa vulgaris), cassava (Manihot esculenta), cocoyam
(Colocasia esculenta and Xanthosoma sagittifolium), and sorghum (Sorghum bicolor) are known
to contain cyanogenic glycosides [81,82]. Cyanogenic glycosides and glucosinolates are
generally higher in young leaves [83,84] and reproductive tissues [23,83–85]. They are toxic
in higher concentrations [86], but in response to the low light, some plants such as tropical
Prunus turneriana tend to accumulate more cyanogenic glycosides in older leaves. Although
cyanogenic glycosides and glucosinolates in plants also respond to climatic stress such
as drought and increased temperatures [80,86], they are not discussed in the following
sections of this review.
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3. Factors Influencing PSMs Production in Plants

Vickers et al. [87] have proposed two hypothetical mechanisms by which plants may
respond to multiple external stressors: membrane stabilization and direct antioxidative
scavenging of reactive oxygen species (ROS) generated under stressful conditions and
to attract pollinators [88]. Under oxidative stress, plants either directly catalyze ROS
to less harmful compounds using enzymes such as superoxide dismutase, catalase, and
peroxidase or mediate enzymatic regeneration of antioxidants (e.g., monodehydroascorbate
reductase, dehydroascorbate reductase, and glutathione reductase) [64]. Non-volatile
isoprenoids such as tocopherols, zeaxanthin, and carnosic acid can scavenge ROS directly
by reactions through hydroxyl radicals [89,90]. Interestingly, rising global temperatures and
other environmental variables such as atmospheric O3 concentration and UV-B radiation
are known to increase plant stress and, therefore, enhance or limit PSMs production as
means to cope with such stressors. VOC emissions from plants are triggered by wounding
and tri-trophic interactions (plant-herbivorous-carnivorous arthropods) [91] and they are
influenced by various environmental factors, including temperature, light, moisture, and
pollutants [92]. Individual stress has a selective influence on PSMs production, either by
inducing or inhibiting the compound biosynthesis or emission based on stress conditions
in plants (Figure 5). While PSMs have diverse functions in plants, their production also
depends on multiple factors [34,93]. The effects of abiotic stress on PSMs production are
given in Table 1.
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Table 1. Plant secondary metabolites produced in response to abiotic stresses and their reported pharmacological properties.

Stress
Condition(s) Plant Species (Family) PSMs Produced Effects on PSMs

Concentration Compound Class Bioactive Compounds Reported Pharmacological
Properties

Cold stress Catharanthus roseus (Apocynaceae) [98] vindoline Decrease Alkaloids vindoline Antidiabetic [99]

Cold stress Glycine max (Fabaceae) [94] genistein, daidzein Increase Phenolics genistein, daidzein Antiproliferative [95,96]

Cold stress

Solanum lycopersicon (Solanaceae) [87,97]

(Z)-3-hexenol and (E)-2-hexenal
(dominant); 1-hexanol and

1,4-hexadienal (smaller quantities)
Increase Fatty Acyls (E)-2-hexenal Antibacterial [100]

Cold stress β-phellandrene, (E)-β-ocimene Increase Terpenoids NA NA

Cold stress
δ-elemene, α-humulene and

β-caryophyllene (dominant); in severe
cold: β-elemene is produced.

Increase Terpenoids δ-elemene, α-humulene and
β-caryophyllene

Antiproliferative [101];
anticancer [102];

anti-inflammatory [103]

Cold stress Zea mays (Poaceae) [104] pelargonidin Increase Phenolics pelargonidin Antithrombotic [105]

Cold stress Fagopyrum tartaricum (Polygonaceae) [106] anthocyanins (e.g.,3-O-galactosides) and
anthocyanidins (e.g., malvidin) Increase Phenolics anthocyanins Antioxidant [107]

Cold stress Withania somnifera (Solanaceae) [108] withanolide A, withaferin A Increase Terpenoids withanolide A; withferin A Neuroprotective [109];
anticancer [110]

Cold stress Camellia sinensis (Theaceae) [111] nerolidol glucoside Increase Terpenoids NA NA

Drought Amaranthus tricolor (Amaranthaceae) [112]

hydroxybenzoic acids (gallic acid,
vanillic acid, syringic acid,

p-hydroxybenzoic acid, salicylic acid,
ellagic acid), hydroxycinnamic acids

(caffeic acid, chlorogenic acid,
p-coumaric acid, ferulic acid,

m-coumaric acid, sinapic acid,
trans-cinnamic acid), flavonoids

(iso-quercetin, hyperoside, rutin).

Increase Phenolics
(Flavonoids) p-hydroxybenzoic acid Antisickling activity [113]

Drought Camellia sinensis (Theaceae) [114] Epicatechins Increase Phenolics
(Flavonoids) epicatechins Antioxidant [115]

Drought Camptotheca acuminata (Nyssaceae) [116] camptothecin Increase Alkaloids camptothecin Antitumour [117]

Drought
(PEG-induced) Catharanthus roseus (Apocyanaceae) [118] vinblastine Increase Alkaloids vinblastine Anticancer [119]

Drought Cistus clusii (Cistaceae) [120] epigallocatechin gallate, epicatechin,
epicatechin gallate, and ascorbic acid. Increase Phenolics (Flavonols) epigallocatechin gallate Anticancer [121];

antibacterial [122]
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Table 1. Cont.

Stress
Condition(s) Plant Species (Family) PSMs Produced Effects on PSMs

Concentration Compound Class Bioactive Compounds Reported Pharmacological
Properties

Drought Crataegus laevigata, C. monogyna
(Rosaceae) [123]

chlorogenic acid, catechin,
(−)-epicatechin Increase Phenolics chlorogenic acid,

(−)-epicatechin Antioxidant [124,125]

Drought Glycine max (Fabaceae) [126] trigonelline Increase Alkaloids trigonelline Antidiabetic [127]

Drought Hypericum brasiliense (Hypericaceae) [128]
isouliginosin B, rutin,

1,5-dihydroxyxanthone Increase
Phenolics isouliginosin B, rutin, Antinociceptive [129];

Anticancer [130]

betulinic acid Terpenoids betulinic acid Anticancer [131]

Drought Lupinus angustifolius (Fabaceae) [132] chinolizidin Increase Alkaloids NA NA

Drought Papaver somniferum (Papaveraceae) [133] morphine, codeine Increase Alkaloids morphine, codeine Analgesic [134,135]

Drought Pinus sylvestris (Pinaceae) [136] abietic acid Increase Terpenoids abietic acid Antiallergic [137];
anti-inflammatory [138]

Drought Salvia miltiorrhiza (Lamiaceae) [139] tanshinones, cryptotanshinone Increase Terpenoids cryptotanshinone Anticancer [140].

Drought S. miltiorrhiza [139]
rosmarinic acid Decrease

Phenolics
rosmarinic acid Antioxidant [141]

salvianolic acid Increase salvianolic acids Antioxidant [142]

Drought Scrophularia ningpoensis
(Scrophulariaceae) [143]

catalpol, harpagide, aucubin,
harpagoside Increase Glycosides catalpol, aucubin Hepatoprotective [144];

neuroprotective [145]

Ozone (O3)
stress S. lycopersicon [87,97]

α-carotene, β-carotene, violoxanthin Increase Terpenoids β-carotene Antioxidants [146];
anti-inflammatory [147]

isoprene, α-pinene, β-pinene, myrcene,
limonene, sabinene, (E)-β-ocimene,

(Z)-β-ocimene, α-humulene,
(E)-β-farnesene, (E,E)-α-farnesene,
(E)-β-caryophyllene, δ-cadinene

Increase Terpenoids α-pinene; myrcene;
limonene; α-humulene.

Anti-inflammatory [148];
anti-asthmatic [149];

antioxidant [150];
anti-inflammatory [151]

O3 Gingko biloba (Ginkgoaceae) [152] ginkgolide A Increase Terpenoids ginkgolide A Neuroprotective [153]

Ultraviolet
radiation-B

(UV-B)
Arabidopsis thaliana (Brassicaceae) [154]

kaempferol
3-gentiobioside-7-rhamnoside;
kaempferol 3,7-dirhamnoside.

Increase Phenolics
(Flavonoids) NA NA

UV-B Brassica napus (Brassicaceae) [155]
quercetin 3-sophoroide-7-glucoside;

quercetin 3-sinapyl
sophoroside-7-glucoside

Increase Phenolics
(Flavonoids) NA NA

UV-B Brassica oleracea (Brassicaceae) [156] cyanidine glycosides; sinapyl alcohol Increase Phenolics
(Flavoboids) NA NA
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Table 1. Cont.

Stress
Condition(s) Plant Species (Family) PSMs Produced Effects on PSMs

Concentration Compound Class Bioactive Compounds Reported Pharmacological
Properties

UV-B C. roseus (Apocynaceae) [157,158] catharanthine, vindoline Increase Alkaloids catharanthine Anticancer [159]

Clarkia breweri (Onagraceae) [160] eugenol, isoeugenol, methyleugenol,
and isomethyleugenol Increase Phenolics eugenol Antifungal [161];

anti-inflammatory [162]

UV-B Fagopyrum esculentum (Polygonaceae) [163] rutin, quercetin, catechin Increase Phenolics quercetin; catechin
Antioxidant [164];

anticancer and antioxidant
[165,166]

UV-B Gnaphalium luteoalbum (Asteraceae) [167] calycopterin; 3’-methoxycalycopterin Increase Phenolics
(Flavonoids) calycopterin Anticancer [168]

UV-B G. viravira [169] 7-O-methyl araneol Increase Phenolics
(Flavonoids) NA NA

UV-B Hordeum vulgare (Poaceae) [170] saponarin; luteolin Increase Phenolics
(Flavonoids) saponarin; luteolin Antihypertensive [171];

antibacterial [172]

UV-B Marchantia polymorpha
(Marchantiaceae) [173]

luteolin 7-glucuronide; luteolin
3,4’-di-p-coumaryl-quercetin

3-glucoside.
Increase Phenolics

(Flavonoids) NA NA

UV-B Quercus ilex (Fagaceae) [174] acylated kaempferol glycosides Increase Phenolics
(Flavonoids) kaempferol Anticancer [175];

anti-inflammatory [176]

Heat stress C. acuminata [177] 10-hydroxycamptothecin Increase Alkaloids 10-hydroxycamptothecin Anticancer [178]

Heat stress Daucus carota (Apiaceae) [179–181]

α-terpinolene Decrease Terpenoids α-terpinolene Antioxidant and anticancer
[182]

α-caryophyllene, β-farnesene Increase NA NA

anthocyanins, coumaric and caffeic acid; Increase Phenolics p-coumaric acid and caffeic
acid Antioxidant [183,184]

Heat stress Q. rubra (Fagaceae) [185] isoprene (2-methyl-1,3-butadiene) Increase Terpenoids NA NA

Heat stress S. lycopersicon [87,97]

β-phellandrene (dominant), 2-carene,
α-phellandrene, limonene; increased

emission of (E)-β-ocimene after
treatment above 46 ◦C; β-caryophyllene.

Increase Terpenoids
α-phellandrene;
β-caryophyllene

Antifungal [186]; anticancer
and anti-inflammatory

[102,103]

α-humulene Decrease α-humulene Anticancer [187]

Heat stress
(increased
humidity)

Centella asiatica (Apiaceae) [188] asiaticoside Increase Phenolics asiaticoside Anti-cellulite agent [189]

Abbreviations: NA: not available; LOX: lipoxygenase; UV: ultraviolet; ROS: reactive oxygen species.
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3.1. Effects of Heat Stress on PSMs

Warming causes the accumulation of terpenoids, which usually have protective func-
tions in mitigating environment-induced oxidative stress in plants [87,190]. For instance,
tomato (S. lycopersicum) grown under heat stress (at 46 ◦C) emits higher levels of monoter-
penes such as α-thujene, α-pinene, camphene, 2-carene, α-phellandrene, δ-3-carene (car-
3-ene), α-terpinene, limonene, β-phellandrene, (E)-β-ocimene, and terpinolene; and also
sesquiterpenes such as δ-elemene, β-elemene, α-humulene, and β-caryophyllene (Table 1)
compared to controls [97]. In contrast, Nogués et al. [191] observed decreased emission
of terpenes in Citrus monspeliensis grown under laboratory conditions at 35 ◦C; instead,
increased assimilation of water-soluble antioxidant ascorbate indicates a shift from terpene-
mediated to ascorbate-mediated ROS scavenging mechanism. Moreover, when C. mon-
speliensis was grown in the field, total terpene emission was higher during winter than
in summer [191]. These contrasting findings suggest that terpene emissions under heat
conditions could be species-specific and vary seasonally. Additionally, free fatty acids
released by membrane phospholipase in response to heat (and cold) form lipoxygenase
(LOX) products via lipoxygenase pathway, out of which C6 compounds (Z)-3-hexenal and
(E)-2-hexenal are most common [97]. Wounded plants also release these two compounds
within a few minutes [192,193]. Notably, (E)-2-hexenal acts as a chemical signal inducing
the expression of stress-related transcription factors such as HSFA2 (heat stress transcrip-
tion factor A-2) and MBF1c (multiprotein-bridging factor 1c) [194]. Heat stress may cause
the melting of cuticular lipids, thus increasing cuticular permeability [195], and extreme
temperatures may rupture terpene-containing-glandular trichomes, releasing the contents
into the air [97]. After exposure to cold and heat stresses, favorable pH conditions inside
plastids favor increased terpene synthesis [97] (Figure 5).

Under simulated environmental conditions, heat stress damages membranes (e.g.,
thylakoid membrane) and disintegrates membrane protein complexes (e.g., photosystem
II) [196], consequently decreasing the rate of photosynthesis. Plants counteract such dam-
age through sustained synthesis and emission of terpenes [87,197]. Korankye et al. [197]
proposed that plants produce more terpenes under stressful conditions by diverting carbon
to a non-mevalonate pathway, which otherwise could have been used in photosynthesis.
Monoterpenes such as 1,8-cineole, α-terpinyl acetate, linalyl acetate, limonene, sabinene,
myrcene, α-terpinen, β-ocimene, α-terpinolene, and γ-terpinene are most produced follow-
ing decreased photosynthesis in plants [191,198]. Non-targeted PSMs profiling in tomatoes
revealed higher concentrations of α-tocopherol and plastoquinone under 38 ◦C compared
to lower temperatures (20 and 10 ◦C) [199]. Taken together with other studies [200,201], this
suggests that these compounds function as electron carriers and facilitate photosynthesis
in addition to their anti-oxidative functions. The photosynthetic rate also decreases under
the increasing temperature as in Pueraria lobata [Willd.] Ohwi., and Quercus spp. when iso-
prene synthesis (non-mevalonate pathway) was inhibited with fosmidomycin [202]. They
suggest that isoprene improves thermotolerance in plants and helps photosynthetic appa-
ratus recover after experiencing heat shock (i.e., temperature > 40 ◦C). Studies [203,204]
suggest that plants tolerant to sunlight-induced heat flecks, O3, and ROS produce more
isoprene than non-tolerant species. However, not all plants seem to produce isoprenoid
compounds, but it varies among different plant species. For instance, when grown at 30 ◦C,
Salix phylicifolia L. emitted isoprene, whereas Betula nana L. and Cassiope tetragona (L) D.Don
emitted monoterpenes such as (Z)-2-hexenal, hexenyl butyrate, hexenyl acetate, and 3-
hexenyl-methyl butanoate [205]. Heat stress also enhances the production of water-soluble
antioxidants (e.g., ascorbate and glutathione) as well as lipid-soluble antioxidants (e.g.,
tocopherols) that scavenge increasing ROS [206,207]. For example, Lycopersicon esculentum
Mill. Var. Amalia, after receiving heat shock at 45 ◦C for three hours, has been shown to
produce more ascorbate and glutathione than its wild thermotolerant type Nagcarlang con-
trol under the same conditions [207]. Heat stress also affects flavonoids production as sweet
basil (Ocimum basilicum L.) responds to high temperatures by producing flavonoids [208].
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3.2. Effects of Cold Stress on PSMs

Cold stress or low-temperature stress is either chilling (<20 ◦C) or freezing (<0 ◦C)
temperature, and they adversely affect plants’ growth and development. Plants grow-
ing in sub-tropical and tropical areas are more sensitive to cold stress than temperate
species [209]. Cold stress tolerance in plants is achieved through selective expression
of stress-defensive genes, which is reviewed by Chinnusamy et al. [210]. For instance,
Jeon et al. [106] investigated transcripts and metabolites in six-day-old tartary buckwheat
(Fagopyrum tartaricum) after cold exposure (at 4 ◦C, for various periods), observing up-
regulation of phenylpropanoid biosynthetic transcripts and significant accumulation of
anthocyanins and proanthocyanidins, both antioxidative (Table 1) [107]. When two va-
rieties of grapevine Vitis vinifera L. (cold tolerant – Maerchal Foch, and cold-sensitive –
Kiszmisz Luczistyj) were exposed to 10/7 ◦C day/night cycle for 14 h photoperiod at
180–200 µm/(m2s) irradiance, the cold-tolerant variety had higher total phenolic com-
pound content when assessed using the Folin-Ciocalteu’s reagent [211]. Subsequently,
when they tested the antioxidant capacities of leaf extracts from two varieties by DPPH
(2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay, leaves from cold-tolerant
varieties yielded better activity.

Another exciting example of the role of PSMs in plants under cold stress is the medic-
inal plant, Indian ginseng (Withania somnifera L.), which is the primary source of biolog-
ically active withanolides. Mir et al. [108] studied the accumulation of withanolides in
response to cold stress in two genotypes of W. somnifera (AGB002—wild genotype and
AGB025—cultivated genotype). After subjecting these two genotypes to chilling temper-
ature (4 ◦C, for a maximum of seven days), bioactive compounds such as withanolide A
in the roots and withaferin A in leaves were detected in both genotypes, suggesting the
involvement of withanolides in cold tolerance. Moreover, the wild genotype showed a
higher accumulation of marker withanolides than the cultivated one, which could mean
that plants may not produce relevant bioactive compounds when out of their natural
habitat, which is discussed later.

Glucosylated terpenoids (e.g., some sesquiterpenes) are another group of PSM in-
volved in cold stress tolerance. Zhao et al. [111] reported the accumulation of glucosy-
lated sesquiterpene and nerolidol glucoside (i.e., catalyzed by plant glycosyltransferase,
UGT91Q2) in tea plants (Camellia sinensis) in response to cold stress (freezing temperature,
−5 ◦C, for 4 h). The accumulation of nerolidol glucoside was directly proportional to
the expression level of UGT91Q2, indicating that cold stress induces glycosylation in tea.
Moreover, the ROS-scavenging ability of nerolidol glucoside was significantly higher than
nerolidol, thus increasing cold tolerance in tea.

3.3. Effects of Drought Stress on PSMs

Climate change is expected to alter precipitation patterns and results in drought
stress (water deficit) in some plants. Drought stress is considered major abiotic stress that
impedes metabolism [212,213] and leads to changes in plants at the morphological, physio-
logical, biochemical, metabolic, and transcriptional levels. ROS formation is one drought
stress effect, which damages cellular components, including proteins, lipids, and nucleic
acids [214,215]. Accumulation of flavonoids such as flavonols and anthocyanins is essential
in protecting against abiotic stresses, including drought stress, but the mechanism of action
is poorly understood [216]. For example, concentrations of antioxidant flavonols epigallo-
catechin gallate, epicatechin, and epicatechin gallate increase in the leaves of Cistus clusii
under drought stress, reaching a maximum after 30 days of exposure [120,217]. However,
the efficacy of photosystem II (PSII) and lipid peroxidation remained unchanged. Under
drought stress, PSII in the cotton (Gossypium hirsutum) also remained unaffected [218].
Nakabayashi et al. [216,219] also obtained a similar result (increasing flavonols and antho-
cyanins) under drought stress in the aerial parts of Arabidopsis thaliana (wild type, Col-0)
and confirmed that overaccumulation of flavonoids is key to drought tolerance. There was
also a drastic increase in the concentrations of glycosides of kaempferol, quercetin, and
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cyanidin along with drought stress marker metabolites (proline, raffinose, and galactinol).
Excessive accumulation of anthocyanins protects plants against drought stress [219], and
anthocyanins are thought to be more robust antioxidants due to their higher level of hy-
droxylation [220]. A few other studies [221,222] have reported similar observations, i.e.,
increased accumulation of anthocyanins in plants under drought. Drought stress in Ama-
ranthus tricolor genotype VA3 increased concentrations of at least 16 phenolic compounds,
including six hydroxybenzoic acids, seven hydroxycinnamic acids, three flavonoids, and
a new phenolic acid, trans-cinnamic acid (Table 1) [112]. In tea plants, fulvic acid is the
primary driver of tolerance against drought stress by enhancing ascorbate and glutathione
metabolism and promoting flavonoids biosynthesis [223]. More examples and patterns of
biochemical changes induced by drought stress in plants are given in Table 1.

3.4. Effects of Ultraviolet (UV) Radiation on PSMs

Plants respond to excessive ultraviolet radiation (UV) both morphologically and
physiologically. UV radiation is known to trigger a wide range of responses in plant cells,
mainly by UV-B (280–320 nm) and less by UV-A (315–400 nm). Plants’ response to UV
stress depends on their perception, signal transduction mechanism, and influence of gene
expression [224]. Other environmental factors also influence response to UV-B stress in
plants as UV radiation indirectly damages the photosynthetic apparatus by generating
ROS [225]. Thus, plants have developed a mechanism to protect against UV radiation and
allow photosynthetically active radiation (PAR) to reach mesophyll and palisade tissues in
order to enable photosynthesis. Synthesizing UV-absorbing flavonoids is one mechanism
to mitigate photoinhibition and photooxidative damage by either reducing UV penetration
or quenching ROS. Flavonoids can absorb radiation in the UV region of the spectrum; thus,
these compounds are responsible for filtering UV light in plants [226]. Unlike other lights
of different wavelengths, UV-B radiation can damage DNA and chloroplasts, particularly
photosystem II (PSII) and modify or inhibit gene expression due to its high energy, and
they are absorbed by a wide range of molecules [227]. When Stapleton and Walbot [226]
investigated DNA damage in maize plants exposed to UV-C or UV-B radiation at a dose
of 6000 J/m2, maize plants with flavonoids, primarily anthocyanins, suffered less DNA
damage than maize plants deficient in flavonoids. Flavonoids with a catechol group in
their B-ring skeleton (e.g., quercetin derivatives) are best known to protect photosynthetic
tissues from such oxidative damage [228]. Moreover, exposure to excess UV-B radiation
causes increased synthesis of stronger antioxidants such as dihydroxy B-ring-substituted
flavonoids (e.g., quercetin and luteolin glycosides) (Figure 5) and less effective antioxidant
flavonoids such as kaempferol or apigenin glycosides [229,230]. As a response to UV
irradiation, the concentrations of quercetin flavonoids increase in Brassica napus [156] and
Fagopyrum esculentum [163]. The concentration of antioxidative flavonoids increased in
Kalanchoe pinnata when exposed to UV-B radiation compared to ordinary white light [231].
When Del Valle et al. [225] investigated the effects of UV radiation in Silene littorea, UV
exposure increased the concentrations of protective phenolic compounds but affected
its reproductive efficacy. UV-B radiation modifies gene expression, but their underlying
molecular mechanism is not well understood, unlike other phytochrome and blue/or UV-A.
Herrlich et al. [232] attribute plant response to UV-B stress mainly to damage caused to cell
membranes and DNA. The multiple roles of flavonoids, including photoprotection and the
effects of stress on flavonoid biosynthesis, are reviewed elsewhere [52,54].

3.5. Effects of Ozone on PSMs

Ozone (O3) in the lower atmosphere (troposphere) acts as a greenhouse gas and is
phototoxic to plants [233]. It is usually produced by reactions between primary pollutants
(such as carbon oxides, sulphur oxides, nitric oxides, and hydrocarbons) catalyzed by
sunlight. Although O3 is neither a free radical nor a ROS, its strong oxidizing properties
enable it to react with biomacromolecules, including lipids, proteins, nucleic acids, and
carbohydrates [234]. Generally, O3 enters through stomata and damages leaf tissues, mainly
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in the upper (adaxial) layers resulting in chlorosis and lesions. Physiologically, exposure to
O3 impairs stomatal function (dysfunction of transpiration and water use efficiency) and
reproductive development, CO2 assimilation, and subsequently photosynthetic activity. In
snap bean (Phaseolus vulgaris), exposure to an ambient concentration of O3 (≤150 ppb, 1 h)
[along with water stress (≤15%)] induces sluggishness in stomatal closure, subsequently
causing more significant loss of leaf surface water [235].

In addition to changes in plant physiological functions, O3 triggers pathways respon-
sible for producing defensive molecules, such as flavonoids. When Mao et al. exposed
soybean leaves to elevated O3 (110 ± 10 nmol mol−1 for 8 h daily, for 54 days), the con-
centrations of rutin, quercetin, and total flavonoids increased significantly [236]. Ozone
also enhances the activity of enzymes involved in flavonoid biosynthesis. Plants fumigated
with O3 show increased activities of phenylalanine-ammonium lyase (PAL), and chalcone
synthase (CHS) enzymes involved in phenylpropanoid and flavonoid biosynthesis path-
ways [237] and subsequently produce protective compounds that can scavenge ROS [56].
The general phenylpropanoid pathway and flavonoid biosynthesis pathways are outlined
in Figure 6 below. These pathways, in turn, contribute significantly towards plant defense
response by producing protective phenolic compounds such as condensed tannins and
flavonoids that can scavenge ROS [57]. For instance, when Arabidopsis thaliana is exposed
to O3 (300 ppb daily for 6 h), PAL mRNA levels increase 3-fold compared to their control
plants [238]. Similarly, O3 treatment (200 nL/L for 10 h) increases both PAL and CHS
activities resulting in a 2-fold increase of total leaf furanocoumarins and flavone glycosides
in parsley (Petroselinum crispum) [239]. Lignin deposition in O3 exposed leaves is also
linked to increased PAL activity [240], whereas in sage (Salvia officinalis), both PAL and
PPO (phenol oxidase) activities were suppressed after 24 h exposure to O3 [241]. However,
rosmarinic acid synthase (RAS) activity is accompanied by the increased transcription
level of genes (e.g., RAS) encoding biosynthesis enzymes, suggesting that the sage plant
mediates oxidative damage through synthesizing phenolic compounds.

Studies have shown that plant chemical responses to O3 exposure variably depend on
the O3 concentration [242]. Ozone alone enhances the production of phenolic compounds
more significantly than in response to the increased CO2 concentration, while the combina-
tion of these two factors resulted in higher diterpenes, but not mono- and sesquiterpene,
synthesis in plants [243]. However, some experiments showed contrasting results from
O3 fumigation. Leaves of Ginkgo biloba, upon fumigation with an elevated level of O3,
increased the concentrations of terpenes (Table 1), but phenolics decreased [152]. Ozone
also enhances the accumulation of salicylic acid (SA) in plant tissues; for instance, in the
tobacco plant (Nicotiana tabacum), emission of SA-derived methyl salicylate increases
upon exposure to O3 [244,245]. In Arabidopsis, SA accumulation is necessary for forming O3-
induced mRNAs, such as PAL and pathogenesis-related protein 1 (PAR1) transcripts [245].
Nevertheless, some plants (such as tobacco plants) do not require SA accumulation to
form PAL transcripts [246]. These examples suggest that O3 induces at least two signaling
pathways, the SA-dependent pathway associated with pathogen defense response and the
SA-independent pathway in the protective response to O3.

Isoprene in tree foliage is known to protect foliage from oxidative stress. For instance,
when Loreto et al. [204] applied isoprene (2–3 ppm) exogenously to tobacco and birch leaves
fumigated with O3 (300 ppb), photosynthesis was consistent throughout the treatment
period with the less accumulation of ROS compared to their fosmidomycin-treated control
(showed more ROS accumulation and decreased rate of photosynthesis). Moreover, after
three days of O3 treatment, they observed that areas of leaves treated with isoprene were
intact, suggesting that isoprene protects photosynthetic tissues and stabilizes the thylakoid
membrane. Isoprene protects photosynthesis in those plants exposed to acute thermal
and O3 stress through antioxidative action (quench H2O2) and preventing membrane
lipid peroxidation. For instance, leaves of Phragmites australis for which their endogenous
isoprene production was inhibited by applying fosmidomycin become more sensitive to
O3 stress than isoprene-producing leaves [204].
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Figure 6. General phenylpropanoid pathway and flavonoid biosynthesis (adapted from [247,248].
Solid arrows represent single enzymatic reaction; dashed arrows represent multiple sequential
reactions. Enzymes involved: PAL—phenylalanine ammonia lyase; CHS—chalcone synthase; STS—
stilbene synthase; CHR—chalcone reductase.
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Exposure to high O3 concentration causes VOC emission, but at chronic O3 level, it
modifies compositions of BVOCs, consequently affecting tri-trophic interactions and weak-
ening plants’ response to arthropod attack [245,249]. During such situations, isoprenoids
(mainly hemiterpenes, monoterpenes, and sesquiterpenes) are synthesized by plants to
tolerate O3-induced damages. Hemiterpene is an example of an isoprenoid released in the
leaves, as it can protect photosynthetic apparatus and scavenge O3 by-products and ROS
due to its antioxidative activity [204]. The effect of O3 on alkaloid biosynthesis remains
less elucidated, but polyamines in plants, which is an important alkaloid precursor, are
correlated to O3 tolerance [234]. Polyamines in plants possess a wide array of physiolog-
ical functions [240] in addition their involvement in response to both abiotic and biotic
stresses [250].

4. Reported Pharmacological Properties of PSMs Present in Plants Affected by Ex Situ
Abiotic Stresses

Plant protective secondary metabolites are diverse in structure and biological prop-
erties, and they have been continuously exploited for pharmaceutical, nutraceutical, and
cosmetic uses [251] (Figure 7). Flavonoids and other phenolic compounds are predominant
among secondary metabolites produced in response to climatic/or abiotic stress (Table 1).
Flavonoids confer protection against inflammation, allergy, and bacterial infections [252].
Flavonols (or 3-hydroxy flavones), one of the main subclass of flavonoids, are apparent
antioxidants in stressed plants, and they are known to prevent nuclear DNA damage by
free radicals like H2O2 [253]. Flavonols are polyaromatic secondary metabolites with three
rings, and many of them are bioactive. Many flavonoids possess antiviral properties. For
instance, the hydroxy (OH) group in the ring-C of flavonols makes them more effective
against herpes simplex virus type I than flavones [254]. Fisetin is another example of an
active flavonoid produced by plants under oxidative stress, preventing membrane lipid
peroxidation, DNA damage, and protein carbonylation [247]. Fisetin showed numerous
biological activities such as protection against cell death from oxidative stress, growth, and
maintenance of nerve cells (primary cortical neurons from a rat) [248,255]. Fisetin sup-
presses many inflammatory pathways, including Nuclear Factor-kappa B (NF-kB) pathway,
helping prevent cancerous growth [256,257]. Similarly, Hussain et al. [258] also observed
the protective effect of fisetin against smoke-induced oxidative stress and inflammation in
rat lungs. Plant UV filters, kaempferol, and quercetin are a few other examples of bioac-
tive flavonoids. Kaempferol is an anti-inflammatory [259], chemo-protective [260], and
cardio-protective [261]. Polyphenolic resveratrol is one of the essential stilbene phytoalexin
produced by a plant’s defense mechanism, and it possesses antioxidant, anticancer, and
anti-estrogenic properties [262]. The immunoinhibitory compound, calycopterin isolated
from the medicinal plant Dracocephalum kotschyi [168], was elevated upon UV irradiation
in Gnaphalium luteo-album [167]. Tanshinones are other examples of bioactive phenols. In
response to severe drought stress, their concentration in the Salvia miltiorrhiza increases,
including tanshinone I and tanshinone IIA by 182% and 322%, respectively, compared
to 148% under the moderate drought stress [139]. Tanshinones are known for their anti-
inflammatory, antioxidant, and anticancer properties [263].

Nitrogen-containing compounds, alkaloids, are another group of secondary metabo-
lites widely produced in plants for defense, and they are known to exhibit diverse biological
activities, including anti-inflammatory, anti-malarial, and anticancer activities [264]. The
fungistatic activity of α-tomatine (Solanum and Lycopersicon species) in Fusarium oxys-
porum f. lycopersici (tomato wilt) was the first bioactive alkaloid reported in 1945 by
Irving et al. [69]. Alkaloids and their precursors accumulate more in plants when exposed
to various stress factors. For example, Catharanthus roseus, when exposed to UV-B radiation,
synthesizes more indole alkaloids and precursors of vinblastine and vincristine increase
in hairy roots [265]. These alkaloids inhibit cell mitosis by destroying microtubules of the
mitotic apparatus, blocking cancer cell division [266]. Bioactive alkaloids accumulate in
response to high temperature, drought, and UV-B stresses (Table 1). Indole alkaloid vindo-
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line from Catharanthus roseus (which increases in response to UV-B) showed anti-diabetic
(reduces fasting blood glucose level) and anti-inflammatory (reduces pro-inflammatory
cytokines, TNF- α and IL-6) properties [99].

The number of structurally determined specialized plant terpenes exceeds 105, in-
cluding >12,000 diterpenoids [267]. Plant terpenoids are diverse and have been a valuable
source of medicinal discoveries because terpenoids are natural NF-kB signaling inhibitors
with anti-inflammatory and anti-cancer properties [268]. Examples include monoterpenes
(e.g., (−)-menthol and cannabinoids); sesquiterpenes (e.g., artemisinin and thapsigargin);
diterpenes (e.g., paclitaxel and ingenol mebutate) and triterpenes found in floral and veg-
etative parts; triterpenoids; and carotenoids (e.g., steroidal alkaloids, cardenolides, and
bixin) (Figure 7). Other compounds are partially derived from a terpene precursor, such as
monoterpenoid alkaloids (e.g., strychnine), which are synthesized in part from secologanin
(Figure 7), a member of the widespread class of iridoid monoterpenes [269].
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5. Biodiscovery Potential of Plants Growing under Ex-Situ Abiotic Stresses

Natural products, including PSMs, have been a significant source of medicines. Accord-
ing to Newman and Cragg, between 1981 and 2010, 1073 small molecules (mol. wt. < 1000 Da)
were approved as new chemical entities, out of which more than half were from natural
products [270]. An additional 321 small molecules were reported in another review published
in September 2019 [271]. According to Butler et al. [272], in their review covering natural
products-derived drugs between 2008–2013, 25 drugs were launched since 2008, and addi-
tional 31 compounds were in the last stage clinical trial (phase III). According to the database
on www.clinicaltrials.gov (accessed 5 September 2021), four compounds have advanced to
phase-IV clinical trial, sixteen have completed phase-III, nine have not yet completed phase-
III, and two compounds have been withdrawn. The four compounds that have advanced to
clinical trial phase-IV are oritavancin (anti-bacterial), ipragliflozin, tofoglifozin (anti-diabetic,
type II diabetes), and vorapaxar (anti-thrombotic) [272]. Recently, pharmaceutical industries
and researchers have renewed their interest in PSMs due to advancements in cutting-edge
technology, including various chromatography and high-resolution spectroscopy tools and
omics platforms [273].

www.clinicaltrials.gov


Molecules 2022, 27, 313 20 of 31

Interestingly, not many PSMs were subjected to clinical trials. The reasons are varied.
One of the continuing challenges for drug discovery from plant sources is obtaining enough
sample extracts and compounds for testing in vitro and in vivo disease models. This
bottleneck is heightened for species in the IUCN red list of threatened or endangered species
prohibited for large sample collection, even if they show biological hits. While cultivating
pharmaceutically interesting plant species may be a solution, it is not always possible to
culture the organism outside its natural habitat. Even when possible, relevant natural
products may not be produced outside their natural habitat [273]. Alternatively, plants
affected by climate change could be a potential source of novel drug leads, considering the
vast diversity of phytochemicals produced by them in response to various abiotic stress
conditions (Table 1).

Climate change rapidly and severely affects plant ecosystems; for instance, mountain-
top ecosystems are sensitive to small shifts in temperature and precipitation patterns [274].
Several studies on the mountaintops of the Asia-Pacific region [275], Oceania [276], and
Europe [277] have reported accelerated plant ecological responses, including distribution,
ecophysiology, and interaction with other organisms due to climatic changes. In overcom-
ing climate change-induced/or abiotic stress and finding an optimal climate niche, plants
produce diverse PSMs, which could be of pharmaceutical interest. For example, the syn-
thesis of plant terpenoids increases under heat, cold, and O3 stress, and the yield of many
biologically active compounds also increases in plants grown in simulated environments of
various abiotic stress conditions (Table 1). Abiotic stresses elicit bioactive compound syn-
thesis [278], such as phenylpropanoids biosynthesis (mainly through shikimate pathway),
causing an accumulation of compounds with defense or signaling functions (e.g., phenolics,
flavonoids, and alkaloids) [279]. Similarly, it is reported that drought stress increases the
concentration of camptothecin (anticancer alkaloid) in Camptotheca acuminata [116,117] and
morphine (analgesic) concentrations in Papaver somniferum. The increased accumulation
of PSMs in response to stress indicates that there may be novel bioactive alkaloid(s) in
climate change-affected plants awaiting discovery. Abiotic stress factors under conditioned
environment can potentially improve the yield of bioactive compounds in plants.

6. Conclusions

Plants constantly interact with the environment, and climate change has already im-
pacted their diversity, growth, and survival. In order to minimize the impact of various
climate change-related stresses (such as warming due to increased greenhouse gas emis-
sion, drought, cold, ozone-layer depletion, and harmful UV-radiation), plants produce
diverse defense secondary metabolites, mainly phenolic and nitrogen-containing com-
pounds. The biosynthesis of defense compounds in plants (including medicinal plants)
is often upregulated, and these compounds are associated with various pharmacological
properties, suggesting that plants affected by climate change may be a rich resource for
drug discovery. However, most of these studies were conducted in simulated/or artificial
environments. Thus, it would be interesting if more such studies (defense compounds
produced by plants in response to climatic stress and their bioactivity) could be conducted
by using plant samples from their natural habitats that are already challenged by the
various climatic stresses.

It is difficult to access various natural products bound by legislation and societal
restrictions, including plants, for drug discovery research, particularly plants associated
with indigenous knowledge. This limitation remains a considerable challenge for those
working with medicinal plants. Other wild plants exposed to various climatic/or abiotic
stresses would be an alternative option for drug discovery researchers. Another obstacle in
the drug discovery process is obtaining adequate compounds for further biological tests
(both in vitro and in vivo). Bioactive compounds increase their concentration in plants
exposed to stress, for example, withanolides in Indian ginseng (Withania somnifera) in-
creases in response to cold stress. Culturing plant tissues of interest at a large scale under a
conditioned environment using various abiotic stresses can potentially improve the yield



Molecules 2022, 27, 313 21 of 31

of bioactive compounds from plants. Thus, plant tissue culture would be another plat-
form for researchers and pharmaceutical industries to upscale the production of valuable
phytochemicals under duress of climate change factors.
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