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In silico methods like molecular docking and pharmacophore modeling are established strategies in lead
identification. Their successful application for finding new active molecules for a target is reported by a
plethora of studies. However, once a potential lead is identified, lead optimization, with the focus on
improving potency, selectivity, or pharmacokinetic parameters of a parent compound, is a much more
complex task. Even though in silico molecular modeling methods could contribute a lot of time and
cost-saving by rationally filtering synthetic optimization options, they are employed less widely in this
stage of research. In this review, we highlight studies that have successfully used computer-aided SAR
analysis in lead optimization and want to showcase sound methodology and easily accessible in silico
tools for this purpose.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432

1.1. The scope of the review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
1.2. The role of molecular modeling methods in the hit-to-lead optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
2. Structure-based computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432

2.1. Molecular docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
2.1.1. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
2.1.2. Practical background – data and software selection, workflow validation, and recent advances in the field . . . . . . . . . . . . . . 1434
2.1.3. Examples of studies successfully integrating molecular docking to the hit to lead optimization process . . . . . . . . . . . . . . . . . 1435
2.2. Pharmacophore modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1438

2.2.1. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1438
2.2.2. Practical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439
2.2.3. Examples of studies successfully integrating pharmacophore modeling to the hit to lead optimization process . . . . . . . . . . . 1440

3. Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.02.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2021.02.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:veronika.temml@pmu.ac.at
mailto:zsofia.kutil@ibt.cas.cz
https://doi.org/10.1016/j.csbj.2021.02.018
http://www.elsevier.com/locate/csbj


V. Temml and Z. Kutil Computational and Structural Biotechnology Journal 19 (2021) 1431–1444
1. Introduction

1.1. The scope of the review

In this review, we focus on the utilization of molecular model-
ing techniques, primarily molecular docking but also pharma-
cophore modeling and molecular dynamics (MD) simulations, in
the hit-to-lead optimization process.

To this end, we have surveyed the research papers deposited in
Web of Science using the query phrases 1) docking ‘‘lead optimiza-
tion” or ‘‘lead identification and optimization” (420 results) and 2)
pharmacophore ‘‘lead optimization” or ‘‘lead identification and
optimization” (156 results). Subsequently, we have excluded the
publications (a) containing only in silico work not verified by
appropriate in vitro methods, (b) using in silico methods for the
explanation of observed results, not involved in the optimization
process (c) lacking the optimization process. The final selection
of 48 publications is presented in this review together with com-
ments on various aspects of molecular modeling techniques that
have to be considered especially when they are used in the opti-
mization process. The objective of this review is to showcase the
sound methodology and guide the readers through the fractional-
ized topic to the relevant sources of information like specialized
reviews and verified databases. We believe that given the low ratio
of publications successfully utilizing in silico methods in the lead
optimization process such a guidepost is highly useful for multiple
audiences. This review is by no means meant to be an exhaustive
overview of all publications using the in silico methods in the opti-
mization process. While we don’t aim at a detailed analysis of the
docking and pharmacophore modeling processes, we provide a
basic analysis of the theory and recent developments pointing
the reader at several excellent review articles that have been writ-
ten on this topic.
Table 1
Selected reviews focused on the docking algorithms and SFs.

Algorithms

Reference Short description
[18] Describes the main concepts behind biologically inspired

algorithms applied to molecular docking simulations.
[19] Reviews the implementation of genetic algorithms in drug design

and quantitative structure–activity relationship.
[20] Describes several molecular docking search algorithms, and the

programs which apply such methodologies.
[21] Reviews key aspects relevant to the field of molecular docking

from forces important in molecular recognition up to the library
design.

[22] Briefly covers some of the applications of genetic algorithms in
the field of drug design.

SFs

[23] Analyzes machine-learning SFs for drug lead optimization in the
2015–2019 period.

[24] Summarizes the progress of traditional machine learning-based
SFs in the last few years and provides insights into recently
developed deep learning-based SFs.

[17] Reviews basic types of SF based on an up-to-date classification
scheme together with suitable application areas and
shortcomings, challenges, and potential future study directions.

[25] Highlight the impact of using QM methods to investigate the
docking of ligands to protein targets by using QM-computed
parameters to either develop or to be used directly as SFs.

[26] Describes authors’ work on developing the PDBbind database and
the CASF benchmark together with relevant work done by other
researchers.
1.2. The role of molecular modeling methods in the hit-to-lead
optimization

The ground rules of medicinal chemistry remain mostly unchal-
lenged since the 1970s when Topliss published his famous scheme
about optimizing aromatic substitution patterns for maximal
bioactivity [1]. From the very beginning, this kind of systematic
optimization has been accompanied by computational analysis like
the Hansch and Free-Wilson analysis that aim to quantify the influ-
ence specific substitutions have on defined bioactivity [2]. Over the
last decades, a vast array of computational methods for medicinal
chemistry purposes have become available. Many novel activities
are found in pharmacophore-based virtual screening campaigns
or found by other 2D and 3D similarity-based methods [3]. Nearly
every publication describing a novel activity also proposes a bind-
ing mechanism predicted in a docking simulation, often refined by
follow-up MD simulations that provide more details on ligand
binding.

Still, the role of computational methods becomes smaller over
the course of drug development. However helpful, all of these
methods are also a double-edged blade. On one hand, they can save
a lot of resources and unnecessary work but they can also tempt
the user to oversimplify challenges, by looking only at the scope
of the simulation and not beyond it. Furthermore, we always have
to consider that methods based on already known ligands and
binding patterns might prevent us from finding uncommon (and
often also highly innovative) ligands. It is, therefore, key to employ
a clean methodology that includes as much known data as possible
and does not exclude ‘‘inconvenient” data points, e.g. atypical
molecules like natural products. In summary, molecular modeling
methods have established a supporting role for themselves during
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hit discovery [4,5], still, they also have a lot to offer during the hit
to lead optimization phase when used by the educated user.
2. Structure-based computational methods

2.1. Molecular docking

2.1.1. Theoretical background
Molecular Docking has been used to predict binding conforma-

tions and interactions between ligands and protein binding sites
for over 40 years, starting with Levinthal aiming to simulate the
arrangement of sickle cell hemoglobin molecules (Hb-S) in the
sickle cells tubular fibers [6]. Since then a plethora of molecular
docking programs have been written and applied, primarily to pre-
dict binding modes of bioactive molecules. Molecular docking pro-
grams for protein–ligand docking are defined by three core
functions: (1) The computational representation of protein and
ligand. (2) The docking algorithm, which is used to solve the opti-
mization problem of fitting the ligand into the protein binding
pocket and generating possible binding poses. (3) The scoring func-
tion (SF) then aims to quantify the quality of said calculated bind-
ing poses. All of these factors have to balance accuracy and
calculation time and therefore work with simplified representa-
tions of the physical reality of protein-ligand binding. In this sec-
tion, we would like to introduce those concepts, but we also
refer the readers to the specialized reviews listed in Table 1 for
more information.

Due to the size and complexity of biopolymers, a full represen-
tation of a complete protein with all atomic coordinates is usually
not feasible for high throughput simulations. The structural data,
acquired from X-ray crystallography or lately cryogenic electron
microscopy is therefore reduced and simplified for docking simula-
tions. A segment of the protein that contains the investigated bind-
ing pocket is selected and prepared. In the most basic approaches,
the protein is simply seen as a surface, which is enhanced by elec-
trostatic properties [7]. Such approaches are still in use for pro-
tein–protein docking, where a more complex representation is



Fig. 1. The schematic representation of genetic algorithms. (A) Genetic algorithms
are inspired by the principles of natural selection, representing sets of variables as
genes, individual solutions as chromosomes, and the pool of the solutions as a
population. In the case of docking, gene examples are translational, rotational, and
torsional degrees of freedom. (B) The docking calculation process starts with the
evaluation of the initial population, derived from a starting conformation. Then a
mutation factor that ensures variation in the genes is introduced. The next step is
crossbreeding – the genes are combined, creating a new (offspring) population of
chromosomes. This process is iterated until (a) the fitness level is satisfactory, (b)
the population has converged and does not produce offspring significantly different
from the previous generation, (c) the fixed number of iterations is reached [13,14].

Fig. 2. Scheme of docking workflow. The sound docking setting validation and
careful data selection must precede the docking calculation and post-processing.

Table 2
Example studies focused on the evaluation of docking programs.

Special focus on Well rated
software

Other tested software Reference

None (generally
small
molecules
and proteins)

GOLD,
AutoDock
Vina, LeDock

LigandFit, Glide, MOE Dock,
Surflex-Dock, AutoDock,
AutoDock Vina, rDock,
UCSF DOCK

[32]

Peptides FRODOCK,
ZDOCK

Hex, pepATTRACT,
PatchDock, ATTRACT

[33]

Peptides HPEPDOCK,
AutoDock
CrankPep

ZDOCK, FRODOCK, GOLD,
Surflex-Dock, AutoDock
Vina, GalaxyPepDock,
MDockPeP, HPEPDOCK,
HawkDock, CABS-dock,
pepATTRACT, DINC

[34]

Metalloproteins PLANTS,
LeDock, Quick
Vina,
AutoDock
Vina

AutoDock, UCSF DOCK [35]

Dihydropteroate
Synthase

Glide, Surflex FlexX, GOLD, DOCK [36]

V. Temml and Z. Kutil Computational and Structural Biotechnology Journal 19 (2021) 1431–1444
not feasible [8]. In protein-ligand docking, the selected binding site
is represented in more detail. In the oldest docking methods both
the protein and the ligands were regarded as rigid (rigid docking).
These approaches were quickly replaced by flexible docking meth-
ods, which treat the protein mostly as rigid but are optimizing the
conformations of the ligand to fit the binding pocket. In more
advanced methods also the receptor has a degree of flexibility,
allowing e.g. individual amino acids to assume different orienta-
tions [9,10]. Full receptor flexibility is mostly taken into account
in docking refinement with MD simulations.

Flexible docking algorithms can be roughly divided into energy-
based methods and stochastic methods. Energy-based methods
aim to represent the binding free energy as a function of the bind-
ing geometry. Stochastic methods work by randomly changing the
translational, rotational, and torsional degrees of freedom of a
molecule [11]. The resulting poses of these changes are then eval-
uated by the SF and kept if they represent an improvement and dis-
carded if they do not. To avoid the algorithm finishing in a local
energy minimum, worse poses are accepted on a random basis
(e.g. with a Monte Carlo algorithm [12]). One of the most widely
applied group of docking algorithms are genetic algorithms (em-
ployed by software programs like GOLD and Autodock). The princi-
ple of genetic algorithms is shown in Fig. 1.

To quantify the quality of binding poses, docking programs use
SFs. SFs can be categorized into physics-based and empirical SFs
although in the meantime a lot of hybrids have been developed.
Physics-based SFs consist of a sum of energy terms from a force-
1433
field (e.g. the MERCK or AMBER force field) that represent interac-
tion energies of the protein–ligand complex, internal ligand
energy, and sometimes also solvation models [15]. Empirical SFs
are based on regressional analysis of structural descriptors and
experimentally elucidated affinity data of known protein–ligand
complexes [16]. Scoring is a hugely controversial topic in molecu-
lar docking and a wide variety of SFs and post-process rescoring
functions have been developed [17].

Next to the theoretical background of molecular docking, we
would like to stress that while docking is a valuable tool to find
out how a ligand molecule binds to a target protein it can also lead
an inexperienced user to over-interpret the results. A docking pro-
gram will almost always propose one or several possible binding
poses and it is the user who needs to judge the quality of the result.
Unfortunately, there are a lot of studies published where docking is
used with very low-quality standards. Often the biological experi-
ments do not necessarily translate to binding affinity to the speci-
fied target, docking scores are often sold as ‘‘activities” and only a
few studies fully include their workflow validation. Haphazard



Table 3
Selected publications dealing with the advances in docking, recent research, and/or
specialized reviews.

Reference Short description

[50] Examine a representative set of currently used computational
approaches to identify repurposable drugs for COVID-19.

[51] Introduces public–private partnership that has been established
worldwide and then describes the background, frame, activities,
and uniqueness of this partnership.

[52] Reviews the experience with Ebola and Zika viruses drug
development, its implications to SARS-CoV-2 drug discovery,
gaps in the field, and computational approaches applied.

[53] Provides a review of the available computational methods that
employ water molecules for the analysis of macromolecules’
properties and structure dynamics.

[54] Research article; Application of Gaussian Boson Samplers for
prediction of accurate molecular docking configurations.

[55] Intends to provide readers with guidance for practically applying
MM/PBSA and MM/GBSA in drug design and related research
fields.

[56] An opinion of a panel of scientists from the industry who work at
the interface of machine learning and pharma on the past,
present, and future role of AI for ADME/Tox in drug discovery and
development.

[31] Covers the current field of in silico docking to nucleic acids,
available programs, as well as challenges faced in the field.

[57] Introduces in silico approaches and tools that have been
developed to predict drug metabolism and fate, and assess their
potential to facilitate the virtual discovery of promising drug
candidates.

[58] Introduces three-dimensional matched molecular pairs concept
and discusses the successful applications.

[59] Discuss the development and application of strategies for the
structure-based design of cancer-targeting peptides against
GRP78.

[60] Outlines the evolution of decoys selection in benchmarking
databases as well as current benchmarking databases that tend
to minimize the introduction of biases, and secondly, propose
recommendations for the selection and the design of
benchmarking datasets.

[61] Focuses on the specifics of docking calculations with covalent
ligands.

[62] Discuss applications and practical aspects of MD simulations
with mixed solvents.

[63] Provides an overview of protein-peptide docking methods and
outlines their capabilities, limitations, and applications in
structure-based drug design.

[64] Examines the successes, limitations, and new avenues for
modeling metalloenzyme inhibitors and metallodrugs.

[65] Gives a historical account of the development of ensemble
docking and discusses some pertinent methodological advances
in conformational sampling.

[66] Presents an overview of the evolution of structure-based drug
discovery techniques in the study of ligand-target recognition
phenomenon, going from static molecular docking toward
enhanced MD strategies.

[67] Summarizes progress in the prediction of RNA–ligand
interactions, available methods for calculating the mode of
binding for various small RNA molecules, the range of SFs for
ligands ranking, accommodating RNA flexibility, and example
studies.

[68] Provides an overview of the state of the art of experimental and
computational approaches for investigating drug metabolism.
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simulations are almost certainly meaningless for lead structure
optimization. It is therefore key to rely on high-quality data and
extensive validation when constructing a fine-tuned docking
workflow that should be able to predict the activity of structural
modifications in a quantitative manner. The optimal docking work-
flow is simplified in Fig. 2 and discussed in the next section.

2.1.2. Practical background – data and software selection, workflow
validation, and recent advances in the field

The main resource for any publically available structural data is
the protein databank (https://www.rcsb.org/), a constantly
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updated database of all published protein structures [27], invalu-
able for molecular modeling purposes [28]. All structural data
available on the target should be carefully examined since the crys-
tallized protein differs from the wildtype and the researcher needs
to judge if a modified structure is still relevant for their study (e.g.
if the investigated binding site is conserved in the mutant struc-
ture). If the resolution of the crystal structure is sufficient for
molecular modeling (ideally below 2.5A), the electron density
map should be checked to identify flexible, or otherwise badly
resolved parts of the protein. Many flexible proteins assume differ-
ent binding conformations upon binding to different small-
molecule ligands. If the investigated scaffold is known beforehand
it is beneficial to select a co-crystallized structure that is similar to
the investigated scaffold. Next, to build an optimal docking work-
flow it is helpful to have a high-quality test set of known ligands
and non-binding compounds, to determine if the workflow can dis-
criminate between them. It must be stressed that aside from the
docking software, the quality of the data used for the modeling
and the way they are processed (e.g. protein preparation and con-
former generation) is the most important factor [29].

Various studies were performed to benchmark the docking soft-
ware and their SFs (see table 2; reviewed in [17,30,31]). Neverthe-
less, due to the number of programs and the variable nature of the
targets and ligands, it is almost impossible to recommend a single
software or method. As it is shown in table 2, the programs not
performing well in one study, were well-rated in studies focused
on other targets or ligands (e.g AutoDock Vina). Therefore, we sug-
gest following the procedures in the benchmarking studies and use
multiple docking programs during validation, to determine the one
that yields the best results for a particular research question. We
are aware that the availability of the docking software often plays
a role in their selection and we have specified it the Tables 4 and 6.
Still, the users should keep in mind that not all commercial and
open-source molecular modeling software are fully compatible.

The minimum validation of a docking workflow is the re-
docking of the co-crystallized ligand into the empty binding pocket
of the protein. The calculated pose is then compared to the bioac-
tive conformation from the crystal structure and the root mean
square distance (RMSD) is calculated. Typically, RMSD values
below 2 Å are considered acceptable, although depending on the
size and flexibility of the ligand and the quality of the crystal struc-
tures, researchers might set a more ambitious benchmark [37]. If
multiple structures for a protein are available, they can be used
for cross-docking validation. A co-crystallized ligand is docked to
another protein structure and the poses are compared to the co-
crystallized complex, to see if the orientation and interactions in
the binding site can be reproduced correctly [38] (Fig. 3).

Ideally, the workflow is also able to enrich active over inactive
compounds in a theoretical validation with a test set of known
actives and inactives from the literature or standardized bench-
marking datasets [40]. In this case, the user is assuming that bioac-
tivity correlates directly with binding affinity. While this is true for
specialized methods like radioligand binding assays, other factors
than direct ligand-binding may play a role in other assay types to
different degrees. It is therefore critical to evaluate how many
other factors influence the outcome of the used assay and if activity
in the assay translates quantitatively to binding affinity.

The validity of the workflow is represented by its ability to rank
active over inactive compounds, which can be represented in the
receiver operating characteristic (ROC) curve. All compounds
found in a test set are ranked according to their score. Each true
active is counted on the vertical scale, while each false positive is
counted on the horizontal scale until all compounds are included
and the curve reaches the top right corner of the plot. Every ROC
curve above the diagonal is an improvement over random selec-
tion. The integral of the ROC curve is the area under the curve,

https://www.rcsb.org/


Table 4
The selected studies using molecular docking in successful lead optimization.

Desired therapeutic use1 Target Fold improvement2 Software used Validation method Reference

Allergic asthma treatment ITK 13 Glide8 Enzymatic [83,84]
Alzheimer’s disease therapy BACE1 DM3 Glide Enzymatic [85]
Antibacterial therapy AcpS 9 FLO999 Enzymatic [86]
Anti-inflammatory drug mPGES-1, 5-LO 5; 2 Gold8 Cell-free [48]
Anti-inflammatory, cardiovascular diseases and cancer treatment BRD4(BD1) DM, >604 S4MPLE10 Direct5 [87]
Antinociceptive, anti-inflammatory FABP 4 AutoDock 4.210 Enzymatic [88]
Antiretroviral therapy HIV-1 RT 1600 Dock 4.010 Cell based [89]
Antiretroviral therapy HIV-1 RT 10 Sybyl8 Enzymatic [90]
Antitubercular drug GyrB 2 Glide XP Enzymatic [91]
Cancer therapy BAX 1 Glide 5.5 Enzymatic [73]
Cancer therapy CSF1R 2 Glide Enzymatic [76]
Cancer therapy G-quadruplex DNA DM, 10x4 ICM-Pro 3.48 Direct6 [92]
Cancer therapy MAGL 13 AutoDock 4.0 Enzymatic [69]
Cancer therapy MAP4K4 12,941 Glide SP Enzymatic [93]
Cancer therapy MDM2 12 Glide 5.5 Cell free [78]
Cancer therapy mTOR 32 Glide Enzymatic [94]
Cancer therapy PDK-1 24 AutoDock 3.05 Enzymatic [95]
Cancer therapy PI3Ka 07 FlexSIS9 Enzymatic [77]
Cancer therapy Pim-1 2 Discovery Studio8 Enzymatic [96]
Cancer therapy SENP1 2 Glide 4.5 Enzymatic [97]
Complications of diabetes ALR 20 Dock Enzymatic [98]
Complications of diabetes ALR2 136 Autodock 4 Enzymatic [99]
Diabetes mellitus therapy PTP1B DM Glide 9.28 Enzymatic [100]
Diabetes mellitus therapy PTP1B 541 QXP9 Enzymatic [101]
Huntington’s disease Jnk3 80 Glide Enzymatic [102]
Hyperuricemia therapy XO 5 Glide Enzymatic [103]
Hyperuricemia therapy XO 470 Glide Enzymatic [104]
Malaria treatment pfENR 167 AutoDock 3.05 Enzymatic [105]
Osteoarthritis therapy MMP-13 5 AutoDock 4.0 Enzymatic [106]
Pain therapy NaV1.7 2 ZDOCK10 Cell based [107]

1 The possible drug disposition in pathophysiological conditions are taken from referenced studies.
2 In IC50, Ki or KD.
3 Data missing.
4 Reported improvement.
5 Thermal-shift assay.
6 DNA polymerase stop assay.
7 Improvement in metabolic stability.
8 Commercial software.
9 Academic.

10 Freeware.
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which additionally contains information about the ‘‘early enrich-
ment” in the dataset if the actives are ranked higher than inactives
[41].

When docking is used for structure optimization all experimen-
tal data that relates to the binding mode, e.g. from mutational
studies or protein fishing experiments should be gathered. It
should be stressed that in contrast to other in silicomodeling appli-
cations, e.g. environmental toxicity assessments studies where
in vitro evaluations are not desired [42–44], in silico lead optimiza-
tion stands and falls with the combination of those methods.

If docking is used in the context of a lead structure optimiza-
tion, the demands on the SF become a lot more challenging. Instead
of just discriminating between active and inactive, a quantitative
relationship between the docking score and measured bioactivity
should be achieved. Enyedy et al showed that automated SFs have
a hard time outperforming the correlation of simple physicochem-
ical properties such as molecular weight or clogP [45]. Šinko con-
ducted a study where 68 PDB crystal structures of complexes
between acetylcholinesterase (AChE) and its ligands were evalu-
ated by different SFs (LigScore1, LigScore2, PLP1, PLP2, Jain, PMF,
and PMF04) to see if they could establish a quantitative correlation
to their activity. The best results were achieved by the PLP2 func-
tion with a coefficient of determination (r2) of 0.591. However, also
physicochemical parameters, like the number of heavy atoms or
the number of sp2 hybridized atoms, performed with an r2 above
0.5 [46].
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Alternatively, it can be useful to identify key interactions that
are vital for the activity of a specific scaffold [47]. This can lead
to empirically customized SFs, especially useful in guiding the opti-
mization process [48]. An exemplary theoretical study by Levoin
et al, conducted already in 2008 aimed to construct docking-
based virtual screening workflows to select high-affinity histamine
H3 receptor ligands, while also excluding activity on the HERG
channel and CYP2D6, prominent antitargets. For their chosen activ-
ity thresholds they achieved an accuracy of at least 70% with these
methods [49].

The advances in the field and the popularity of docking led to its
novel applications in specific areas of drug development. We
would like to mention e. g. the docking of ligands to nucleic acids
and the docking of specific ligands like peptides, but due to the
broad range of the developments, it is beyond the scope of this
review to discuss them in detail. Nevertheless, we have selected
20 representative specialized reviews and research publications
that deal with various directions of recent developments and we
provide their list in Table 3 to ease the reader the way to the infor-
mation. Besides, we hope that the following ‘‘Example” section will
guide the less advanced docking users in the right direction.

2.1.3. Examples of studies successfully integrating molecular docking
to the hit to lead optimization process

Molecular docking has been successfully used in drug screening
campaigns, but its ability to help in lead optimization is still gener-



Table 5
Selected publications dealing with the pharmacophore modeling basics and advances.

Reference Short description

[115] Research article; Introduces a target-specific drug design method
based on a deep learning algorithm and a water pharmacophore
that can autonomously generate a series of target-favorable
compounds.

[116] Research article; Describes BioChemical Library update and
shows (beside others) how the author’s models can be
decomposed into human-interpretable pharmacophore maps to
aid in hit/lead optimization.

[117] Provides a brief introduction to the pharmacophore modeling
concept and presents examples of applications in the specific
field of natural product chemistry.

[112] Overview of the basic pharmacophore modeling concept together
with recent developments in the field.

[118] Research article; Present a new approach that incorporates
flexibility based on extensive MD simulations of protein–ligand
complexes into structure-based pharmacophore modeling and
virtual screening.

[119] Discuss foundations and caveats of scaffold hopping approaches
and analyzes recent methodological developments

[120] Introduces three of the fertile directions in approaching the
biological activity by chemical structural causes: (i) the special
computing trace of the algebraic structure–activity relationship,
(ii) the minimal topologicaldifference (MTD), and (iii)
comparative molecular similarity indices analysis.

[121] Different approaches to the generation of pharmacophore models
are compared together with their strengths and weaknesses.

[122] Reviews pharmacophore techniques that are used for modeling
ADME properties (with a special focus on pharmacophore models
reported for various cytochrome P450 enzymes)

[123] Reviews pharmacophore modeling studies focused on
antitargets.

[124] Describes the specifics in the construction of structure-based
pharmacophores including (i) protein structure preparation, (ii)
binding site detection, (iii) pharmacophore feature definition,
and (iv) pharmacophore feature selection.

[125] Focuses on the synergistic combination of pharmacophore
modeling with other molecular modeling approaches such as the
hot spot analysis of protein binding sites, MD, and docking

[126] A brief overview of structure–activity relationship methods in
ligand-based drug design followed by a more detailed
presentation of issues and limitations associated with empirical
energy functions and conformational sampling methods

[127] Insight into different approaches implemented by the 3D
pharmacophore modeling packages like Catalyst, MOE, Phase,
and LigandScout.

[128] Describes computational models for key nuclear hormone
receptor binding sites generated by ligand-based approach.
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ally questioned. If we plan to use it so, we have to realize that it is
not a stand-alone technique but should be embedded in a work-
flow of different in silico as well as experimental techniques. In
table 4, we have summarized the studies successfully integrating
docking into the optimization process, that we have found. These
studies share a good research methodology, where molecular
docking was connected with in vitro verification and led to opti-
mized compounds. The major reasons why we have excluded the
remaining publications are: (1) the authors used docking just to
elucidate the mechanism of action of their optimized compounds
or performed retrospective molecular modeling on previously opti-
mized compounds (~13% of the query results); (2) the authors have
only proposed the optimization by in silico methods, but haven’t
performed the optimization (~3%); the authors haven’t used appro-
priate methodology to validate their docking results (e.g. valida-
tion of molecular docking in animals or models that are too far
removed from direct target ligand binding interaction; ~1%) (3);
It was not clear, how the authors implemented the docking to
the optimization process (~1%) (4) The authors identified the hit
but did not develop it further (~1%); (5) The docking approaches
did not lead to a more potent compound (~1%). Those reasons
mainly point towards user-based issues in the implementation of
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the docking in the optimization process and we hope that the
sound methodology discussed in the following section will help
to improve the reputation of the molecular docking in the hit-to-
lead optimization.

When we aim to optimize a specific activity, it is vital to be
familiar with the exact molecular mechanism of action, e.g. Gran-
chi et al employed molecular docking to optimize a reversible
monoacylglycerol lipase (MAGL) inhibitor [69]. Most known MAGL
inhibitors act via an unfavorable irreversible mechanism of action,
it was therefore vital in this case to retain the reversibility of inhi-
bition. A docking simulation was conducted and the resulting
poses were clustered to identify the dominant pose orientations
and interaction patterns. This process was used to select poses that
underwent an MD simulation to check their reliability. Synthesiz-
ing the structures that fared best in the computer simulations led
to a compound (17b) with a tenfold improved Ki value compared
to the lead compound. Additionally, aware of the fact that this class
of compounds could act as artifacts and promiscuous bioactive
molecules, the authors carried out a number of control and verifi-
cation experiments including Pan Assay Interference Compounds
(PAINS) analysis. The acronym PAINS was first used by Baell and
Holloway, who described a number of substructural features that
can help to identify false-positive compounds and included them
into publicly available filter-it software [70]. The electronic filters
formulated to recognize PAINS can process hundreds and thou-
sands of compounds in seconds and are a very useful tool in cur-
rent medicinal chemistry. Still, even the authors of this concept,
later on, wrote: ‘‘It has become increasingly clear that overzealous
or simplistic use of these filters may inappropriately exclude a use-
ful compound from consideration and inappropriately tag a useless
compound as worthy of development” [71]. We thus highly recom-
mend including this type of analysis into the optimization process
but keep in mind its limitations. It might be tempting to employ
such filter tools at the beginning of a virtual screening campaign
to exclude all potentially problematic compounds from the start.
This can, however, lead to overlooking interesting hit structures.

Another crucial aspect of optimization by docking is the inter-
pretation of the interaction pattern with the protein. It should be
noted that docking primarily describes reversible inhibition with-
out covalent binding. There are however some specialized
approaches (see [61]) where docking is used to predict covalent (ir-
reversible binding). This is usually accomplished by anticipating
the reaction that takes place and predicting if the reaction partners
will be in close enough vicinity to perform the reaction. Non-
covalent binding is usually driven by electrostatic interactions,
either by ionic interactions or by weaker polar interactions such
as hydrogen bonds. These bonds do not only occur directly
between the ligand and the protein but are also often mediated
by water molecules. Different interaction points often vary in their
relevance for the overall activity. While interactions with the cat-
alytic or substrate binding residues are most likely to play an
important role, it is also key to systematically analyze all interac-
tions, in multiple crystal structure complexes. A handy freeware
tool for conducting interaction analysis is protein–ligand interac-
tion profiler (PLIP), a web server that generates lists of interacting
residues for a list of given pdb entries (available at www.projects.
biotec.tu-dresden.de/plip-web) [72].

If possible, also compounds that do not possess a suspected key
interaction point should be synthesized and tested to verify the rel-
evance of the interaction by loss of activity. Such proof of principle
was shown in several cited studies. We would like to highlight a
2015 study by Stornaiuolo et al, where a structure-based docking
approach was used to develop the first direct activator of BCL-2-
associated X protein (BAX), a pro-apoptotic member of the B-cell
lymphoma-2 family [73]. The authors of this study carefully pre-
pared a design strategy by the analysis of their target and its small



Table 6
The selected studies using pharmacophore modeling and other approaches in successful lead optimization.

Desired therapeutic use1 Target Fold
improvement2

Modeling
method

Software used Validation
method

Reference

Antimitotic agents Tubulin DM3 PM4 HypoGen5 Cell based [153]
Antiretroviral therapy HIV-1

RT
2 FEP NAMD6 Enzymatic [154]

Cancer Dvl PDZ 30 PM, Docking LigandScout, Glide5 Direct1 [146,147]
Cancer PARP1 21 PM, MD Discovery Studio

3.55
Enzymatic [143]

Cancer PRMT5 3 SS Pipeline Pilot 7.55 Enzymatic [155]
Cancer, Alzheimer’s disease, Parkinson’s disease, sleep

disorders, inflammation
CK1 DM PM Discovery Studio

3.15
Enzymatic [156]

Cancer, glaucoma, asthma A3AR 3 FB Chemaxon5 Cell based [157]
Cognitive diseases, renal and cardiac failure, Alzheimer’s

disease
A1AR 4 PM, MD SYBYL 6.2, AMBER

4.15
Cell-free [158]

Glucocorticoid-dependent diseases 11b-
HSD

31 PM LigandScout Cell based [134,151,152]

Growth hormone therapy GH DM PM, FB DistComp6 Cell based [159]
Hyperlipidemia ACAT DM PM HypoGen Cell-free [160]
Inflammatory diseases Caspase-

3
DM MD MacroModel,

Amber 6.05
Enzymatic [161]

Parkinson’s disease A2A AR 5 SS MOE5 Cell-free [162]

1 The possible drug disposition in pathophysiological conditions are taken from referenced studies.
2 In IC50, Ki or KD.
3 Data missing.
4 Methods are abbreviated as follows: PM, Pharmacophore modeling; FEP, Free energy perturbation; MD, Molecular dynamics; SS, Substructure search; FB, Fragment-

Based.
5 Commercial software.
6 Academic.

Fig. 3. Re- and cross-docking. The re-docking sometimes called self-docking
involves the separation of the target from the co-crystallized ligand, subsequent
docking back, and comparison of the calculated pose to the conformation from the
crystal structure. In the case of cross-docking, ligand and target from two different
crystal complexes are used for the docking experiment. The Figure was prepared
using the program PyMOL [39].
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molecule activator by means of docking experiments. Conforma-
tional changes from the inactivated to the activated state were
considered in the activator bindingmodel, by superimposing struc-
tures of the active and inactive state of the protein. Based on
observed interactions, the authors synthesized a series of analogs,
including compounds serving as negative controls. The negative
controls were prepared to evaluate the importance of particular
moieties of the activator. Next, their affinity and selectivity profiles
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of the synthesized compounds were measured and the whole SAR
was rationalized. The resulting lead compound was further evalu-
ated in cellular assays and in vivo on mice models showing effi-
ciency in tumor mass reduction together with the absence of
gross toxicity.

When moving further along in the drug development process
the effects on the whole organism become more and more rele-
vant. A marvelously low IC50 on an isolated target is worth nothing
if the drug can never reach the intended target. ADMET properties
should, therefore, be considered early on in the drug development
process to avoid inauspicious surprises in in vivo trials. There
already a lot of online prediction tools from a wide variety of
sources available to profile compounds for their drug-likeness
and for their ability to be orally absorbed Online predictors like
swissADME (http://www.swissadme.ch/) [74] give a good idea
about oral bioavailability, ability to penetrate the blood–brain bar-
rier and also for the likelihood of a compound to bind to metabolic
enzymes and some anti-targets. Biotransformer, an open-source
prediction tool for drug metabolism was presented at the begin-
ning of 2019. It uses a knowledge and machine learning-based
approach to predict putative metabolites of an input molecule
under different conditions (e.g. gut microbiota and water/soil
microbiota) [75]. An excellent resource to stay on top of novel tools
and databases that become available is http://www.click2drug.org/
, a comprehensive list of computer-aided drug design (CADD)
software.

Nevertheless, even docking itself can be utilized in the improve-
ment of ADMET properties. In a study, focusing on the optimization
of bis-amide derivatives as CSF1R inhibitors, published in 2017, the
authors employed a docking workflow in GLIDE to evaluate possi-
ble replacements for a metabolically labile and poorly permeable
methyl piperazine group in the lead compound. Possible replace-
ment candidates were evaluated in a docking workflow and com-
pounds with good chances of retaining activity were synthesized
and tested. Replacement of the methyl piperazine group and fur-
ther optimization led to more stable compounds and oral bioavail-
ability in a mouse model [76]. Another example of a successful
docking application in improving the ADMET properties can be

http://www.swissadme.ch/
http://www.click2drug.org/
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found in [77]. The lead phosphoinositide 3-kinase (PI3K) inhibitor
was metabolically unstable because of rapid glucuronidation of the
phenol moiety. Based on the X-ray structure of the PI3K, the
authors concentrated their SAR on the interactions with Asp836
and Lys833, but the results of this approach were not successful.
The subsequent virtual docking experiments took into considera-
tion not only Asp841 and Tyr867, but also Asp836 and Lys833.
Based on this docking simulation the authors identified aminopy-
rimidine as a bioisostere of phenol and designed compounds show-
ing comparable PI3K inhibitory activity to the lead compound and
greatly improved metabolic stability. The final compound showed
strong tumor growth inhibition against a KPL-4 breast cancer
xenograft model in vivo.

Docking can be valuable when investigating multi-target inhibi-
tors since it allows us to compare the binding mode within two dif-
ferent proteins that often share binding site similarities. Here, we
would like to discuss one successful and one unsuccessful example
for this application. Giustiniano et al used a docking-based virtual
screening to find dual inhibitors of a murine double minute (MDM)
2 and 4 homologs [78]. Inhibitors that target MDM2 selectively
induce the upregulation of MDM4. Targeting both proteins, there-
fore, increases the chance for an effective clinical response. The
visual inspection of docking results to MDM2 performed by Glide
docking software led the authors to the synthesis of compound
effective against both the MDM2 and MDM4. The lead structure
was then optimized in an in silico guided process to retain both
activities and led to a nanomolar inhibitor of both targets. A bind-
ing mode predicted for the series was then confirmed with NMR
spectroscopy.

However, docking showed the limitations in a study performed
by Cheung et al. The authors performed docking experiments for
the binding sites of the two target enzymes 5-Lipoxygenase (5-
LO) and Microsomal prostaglandin E synthase (mPGES-1) to gain
more insights into their SAR. The docking was performed with
GOLD and the docking poses were analyzed by taking into account
three factors: the presence of key hydrogen bonds, the docking
score, and the similarity of the outcome poses. Nevertheless, the
detailed analysis of the results revealed that the docking simula-
tions underscore the similarities between the two binding modes,
explaining why so many of the derivatives also showed activities
against both, 5-LO and mPGES-1 [48].

In depth in silico analyis was used by a research team led by
Artem Cherkasov, to explore various binding sites on the androgen
receptor (AR). The AR contains a ligand-binding domain, which
serves as a binding site for both androgens and other small mole-
cule ligands. A particularly dangerous mutation in prostate cancer,
however, produces AR-V7, a mutant that lacks the ligand-binding
domain and thereby cannot be controlled by the common andro-
gen deprivation therapy [79]. Inhibitors of the AR targeting alter-
native binding sites are therefore of great interest to treat
prostate cancer. The group used in-silico methods to identify two
alternative binding sites on the DNA binding domain of the AR
[80]. Docking was used to identify inhibitors of the D-BOX dimer-
ization interface of the AR DNA binding domain [81].

The last study that we would like to showcase is a textbook
example for docking applications in lead discovery and lead opti-
mization. Lyo et al used a large-scale docking approach to evaluate
170 million of make-on-demand compounds that can be formed by
130 popular chemical reactions against the AmpC b-lactamase
(AmpC) and the D4 dopamine receptor [82]. They have identified
phenolate inhibitor of AmpC which revealed a group of inhibitors
with unknown precedent and optimized this compound lowering
the Ki 29 times. Against the D4 dopamine receptor, 81 new chemo-
types were discovered, 30 showed submicromolar activity, includ-
ing a 180-pM subtype-selective agonist of the D4 dopamine
receptor. This study was executed under rare conditions that also
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allowed the researchers to address several key questions of the
molecular docking. The authors not only verified their hits and
leads in vitro (over 500 molecules), but they also co-crystallized
selected compounds with AmpC and confirmed their fidelity to
the docking predictions. This large and verified compound data
set allowed them to evaluate SFs and take a closer look at the per-
formance of the human over the computer. The compounds were
spread to the bins covering the highest-ranking, mid-ranking,
and low-ranking scores. The hit rates followed the score after a pla-
teau defined by the highest-ranking molecules. The hit rates of sets
selected by docking score alone and by human visual evaluation
were comparable (at around 24%). Nevertheless, the molecules pri-
oritized by human inspection typically had better affinities and a
disproportionate number of the most potent compounds. This
study shows that it is possible to achieve a quantitative correlation
between score and experimental activity (at least for the D4 recep-
tor) and molecular docking is extremely helpful in drug discovery,
but still confirms the need for human expert inroad.

2.2. Pharmacophore modeling

2.2.1. Theoretical background
Pharmacophore modeling has found a place in drug discovery,

especially for fast and effective screening for new bioactive mole-
cules [108]. A pharmacophore is defined by IUPAC as ‘‘an ensemble
of steric and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific biological tar-
get and to trigger (or block) its biological response‘‘ [109]. These
abstracted three-dimensional interaction patterns can be used to
examine key interaction points that define ligand binding and to
determine which parts of a molecule can be modified while retain-
ing or even improving ligand binding. Established pharmacophore
models for a target binding site can then be compared to the phar-
macophores of conformational libraries in a virtual screening that
requires comparatively little calculation time [110]. Since a phar-
macophore only defines interaction as a general interaction type,
e.g. as a hydrophobic area or a hydrogen bond acceptor, a pharma-
cophore screening can also perform scaffold hopping and propose
different functional groups for bioisosteric replacement [111].

There are two general approaches to generate pharmacophore
models: (i) the structure-based, built on an experimentally eluci-
dated protein–ligand complex, and (ii) the ligand-based approach,
where known ligands are superimposed, to elucidate common
structural elements and pharmacophore features.

There are a variety of different molecular modeling software
packages available for pharmacophore modeling. They are using
different approaches to four key aspects of pharmacophore model-
ing: Calculation of the pharmacophore and feature definitions, con-
formational sampling, screening algorithm, and SF. Several
pharmacophore modeling software programs are reviewed in-
depth under [112]. They are mainly distinguished by the available
types of features and how they are placed. Some features like ionic
interactions or hydrogen bonds are available in all programs and
their definition is rather straightforward based on the physical
properties of these bonds. Many programs also contain more spe-
cialized features e.g. metal binding features for different metals or
even allow the user to define their own features in accordance with
their requirements [110,113].

The screening algorithm then compares the query pharma-
cophore to the pharmacophores of molecules within a conforma-
tional library. Similar models in different software programs can
find different hit molecules within the same database, due to dif-
ferences in the algorithm [114]. Finally, the fit of a compound to
the pharmacophore model is quantified by a SF (often called phar-
macophore fit value). Since the fit into these simplified models is a
more clearly defined task than the fit to an actual binding pocket,



Fig. 4. The comparison of non-selective and Src kinase family selective inhibitors
with the help of pharmacophore models. (A) PP2, Src kinase family selective
inhibitor access a deep, hydrophobic pocket of the lymphocyte-specific kinase Lck
(pdb: 1qpe), not occupied by staurosporine, a potent but non-selective inhibitor (B;
pdb: 1qpd). (C) Stauporine co-crystallized with kinase from a different family
(cyclin-dependent kinase 2; pdb: 1aq1). This kinase lacks the binding pocket near
the ATP-binding cleft seen in A and B. The inhibitors share a common binding mode
in the ATP-binding cleft, but PP2 binds selectively by making additional contacts in
a deep, hydrophobic pocket present in Src kinase family [129,130]. This phe-
nomenon is visualized by the software PyMOL (left side of the panel; [39]), but even
better reflected by pharmacophore models created by the software LigandScout
(presented at the right site; [110]) and showing the feature important for the
selective binding. The yellow spheres represent hydrophobic features, the blue star
is a positive ionizable feature, the green arrow is a hydrogen bond donor feature
and the red arrow marks a hydrogen bond acceptor feature. These pharmacophore
models can serve for the search of new Src kinase family selective inhibitors. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. The comparison of the binding modes of two similar inhibitors with the help
of pharmacophore models. (A) Two similar inhibitors co-crystallized with human
glutamate carboxypeptidase II (pdb: 6RBC and 6S1X) visualized by PyMol software
[39]. (B) Their pharmacophore models prepared by software LigandScout show that
the yellow inhibitor lacks one interaction which is probably responsible for its
lower potency measured in vitro [135]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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SFs are not as controversial as they are in molecular docking.
Recent developments are aiming to combine pharmacophore mod-
eling with MD simulations, creating dynamic pharmacophores that
account for the dynamic process of protein/ligand binding [112].
For more information about the basics of pharmacophore modeling
and the recent developments in the field, please see the publica-
tions listed in Table 5.
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2.2.2. Practical background
Constructing a pharmacophore model requires an in-depth

knowledge of the target protein. Many proteins have a variety of
different binding sites and even for a single binding site there are
usually multiple different binding modes since different ligands
interact with different parts of the pocket (Fig. 4 A and B). Subtypes
of proteins often contain very small differences that can determine
the selectivity of a pharmacophore, e.g. in the case of the Src kinase
family: A hydrophobic pocket is specific for lymphocyte-specific
kinase Lck. If a pharmacophore model is constructed to reflect that
it contains a hydrophobic feature within that pocket (Fig. 4A). A
pharmacophore-based on a non-selective inhibitor does not con-
tain a feature there but has the ability to also find molecules that
bind to other kinases that do not have the side pocket (Fig. 4B
and C) [129,130].

Since one pharmacophore model can only represent a single
binding mode it is often necessary to create multiple models for
a target to cover its active space [131]. Usually automatically gen-
erated models from a single crystallographic complex need to be
further refined by using a test set of known binding compounds.
Same as for docking it is vital to carefully curate the dataset and
use only experimental data that shows direct ligand/target interac-
tions, undisturbed by interactions with other targets or assay com-
ponents, to arrive at a high-quality model [132]. The test set allows
us to calculate several typical quality parameters that can be used
to compare individual models and select the best one. The enrich-
ment factor shows how a model increases the yield of actives com-
pared to random selection. The Ef is the ratio between the number
of true positives (tp) divided by all found virtual hits (vh) and the
number of actives (A) divided by the total number of compounds in
the database (N) [133].
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Ef = (tp/vh)/(A/N)
Model quality can also be represented in the ROC curve. In this

case, the compounds are ranked by the fit value and all compounds
that are not found by the model are counted with a fit value of zero
and represented by a line to the upper right corner of the plot. In a
final experimental validation step, the model is sometimes set to
screen a large database of available compounds. The bests hits
are then biologically evaluated and the gained activity data can
in turn be used to even further refine the model [134].

The application of pharmacophore modeling in lead optimiza-
tion is often about identifying new interaction points that might
increase the potency of an inhibitor. For example two pharma-
cophore models of similar inhibitors with the same binding site
of glutamate carboxypeptidase II [135] help to understand why a
single modification leading to a new hydrogen bond acceptor fea-
ture leads to an increase of potency (Fig. 5). In an optimization pro-
cess, this new feature can then be used to select molecules with a
better chance for high binding affinity.

Sometimes also the de novo design is guided by pharmacophore
models, to evaluate synthesis proposals. To this end, computa-
tional structure generators aim to cover the chemically possible
space and to generate structures that are synthetically feasible
with a reasonable effort [136]. Instead of using databases with
known and available molecules, databases generated by structure
generators can be used to discover novel chemical entities. The
program PhDD combines these methods by generating structures
that fit a specific pharmacophore [137].

Pharmacophores have also been used to design multi-target
ligands, by combining known pharmacophores of two targets,
sometimes with computational methods [138], sometimes simply
by creating chimeric molecules [138,139]. More examples of the
pharmacophore modeling application in the hit to lead optimiza-
tion could be found in the following section.

2.2.3. Examples of studies successfully integrating pharmacophore
modeling to the hit to lead optimization process

Pharmacophore-based thinking is a common strategy in lead
optimization, even if it is not always supported by computational
methods (see Figs. 4 and 5). Many medicinal chemists simply
divide a molecule into different areas and functionalities, to then
modify them by replacing functional groups with moieties with
similar functionality. Even though pharmacophore-based in silico
modeling is not used in lead optimization as often as docking, sev-
eral high-quality publications using pharmacophore models could
be found. The reasons, why we have excluded most of the found
studies are quite similar like in the case of the docking, i.e.: mostly
they (1) used pharmacophore modeling just to elucidate the mech-
anism of action of already optimized compounds (2) the authors
have only proposed the optimization, but haven’t performed it
(3) haven’t used appropriate methodology to validate their model-
ing results, etc. Those reasons are again pointing towards user-
based issues and not the limitations of the pharmacophore model-
ing. The following section is showing the successful application of
pharmacophore modeling in the hit-to-lead optimization process.

This strategy was for example used to design a ligand for botu-
linum neurotoxin serotype A light chain (BoNT/A LC), a zinc metal-
loprotease that cleaves components of the SNARE (soluble N-
ethylmaleimide-sensitive fusion protein attachment protein recep-
tor). Proteolysis of SNARE proteins inhibits the exocytosis of acetyl-
choline into neuromuscular junctions and results in life-
threatening flaccid paralysis [140]. Burnett et al. have focused on
the pharmacophore-based identification and development of
non-Zn(II)-coordinating small molecule, non-peptidic, inhibitors
of BoNT/A LC [141]. The authors decided to use a pharmacophore
modeling strategy since they have been unable to generate an X-
ray co-crystal of their lead candidate in complex with the BoNT/
1440
A LC and the synthetic chemistry guided by structure-based molec-
ular docking studies has failed to provide a derivative possessing
increased potency [142]. Due to the absence of reliable binding site
models, they used three-dimensional search queries derived from
their gas-phase pharmacophore for BoNT/A LC inhibition. This
model defined separation between the overlaps of several differ-
ent, non-zinc(II)-coordinating small molecule chemotypes and
resulted in a new more potent structural hybrid possessing a
Ki = 600 nM [141].

In contrast, Fu et al. successfully integrated both in silico phar-
macophore modeling, MD simulations, and co-crystallization stud-
ies [143]. They focused on the development of inhibitors targeting
poly (ADP-ribose) polymerase-1 (PARP1). PARP1 is an enzyme
involved in the self-repair of cellular DNA damage and its inhibi-
tors are used for breast cancer therapy. In this study, the authors
screened the DrugBank and ZINC databases (in total 40 215 com-
pounds) via the docking and successfully co-crystallized one of
the hit compounds. To explore how to modify and further optimize
their hit compound, they constructed the structure-based pharma-
cophore model. This model was based on the co-crystal structures
of their hit compound as well as ten other co-crystal structures of
PARP inhibitors from the literature. Using structure-based pharma-
cophore features, they designed and synthesized new derivatives
of their hit and tested their PARP1 inhibition activities. The first
series of compounds had negligible effects on PARP1 activity and
led the authors to the re-evaluation of the X-ray crystal structure
and the pharmacophore model. The second round of the following
synthesis has led to several compounds with significantly
enhanced activity and finally to a compound with a novel chemical
scaffold, unique binding interaction with PARP1 protein, and
almost 20 fold lower IC50 in comparison to the parent compound.
The binding mode of this compound was investigated with 10-ns
MD simulations.

Crystal structures provide a ‘‘frozen” picture of a ligand–protein
complex, a system that is, in fact, dynamic in its biological environ-
ment. This raises the question of how ligand–protein interactions
change in the dynamic state. MD simulations aim to answer this
question and are often combined with other methods to analyze
changes in the binding pattern. MD simulations are frequently
used to refine docking poses and elucidate binding affinity patterns
[144], as also shown by Fu et al for PARP1 [143], but we can also
find examples in their combination with pharmacophore model-
ing. Wieder et al investigated the differences between pharma-
cophore models built from the original protein–ligand complexes
obtained from the PDB and pharmacophore models built on the
final structures of an MD simulation [118,145]. They showed that
the resulting models differ in feature number and type from those
built on the original complexes. Furthermore, some of them dis-
played a better enrichment of active compounds than the original
models. This shows that a combination of these techniques could
lead to more successful models in the future.

Another study successfully integrating several in silico methods
is a project by Shan and Zheng conducted in 2009 [146]. The
authors aimed at the optimization of an inhibitor of a dishevelled
PDZ domain, a potential cancer therapeutic target [147]. To this
end, they have prepared the pharmacophore model of their previ-
ously identified hit compound and two non-binders. The pharma-
cophore derived from the hit complex structure was examined and
essential components were selected based on the differences
between their hit and two similar compounds that do not bind to
the PDZ domain. Using this model, they screened the ChemDiv
database with an algorithm that combines similarity search and
docking procedures. The virtual hits were analyzed with pharma-
cophore modeling and the 15 selected virtual hits were examined
with NMR spectroscopy for their binding affinity towards the
dishevelled PDZ domain. All tested compounds showed improve-
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ment over the original compound, the best of them with a 30-fold
improvement in KD.

In a series of studies Schuster and Vuorinen built and then
refined pharmacophore models of 11b-hydroxysteroid dehydroge-
nases (11b-HSD) 1 and 2. The 11b-hydroxysteroid dehydrogenases
are enzymes regulating the intracellular availability of glucocorti-
coids and activation of glucocorticoid receptors and their inhibition
has considerable therapeutic potential for glucocorticoid-
associated diseases [148–150]. While the aim of these studies
was not the lead optimization, they illustrate how a
pharmacophore-based virtual screening approach can be refined
with experimental data to optimally predict activity and selectivity
for a specific target. At the beginning of Schusters and Vuorinens
modeling studies, no X-ray crystal structure of 11b-HSD 1 was
available. Accordingly, they employed ligand-based pharma-
cophore models as virtual screening tools for the identification of
novel classes of 11b-HSD inhibitors [151]. First models with the
ability to identify 11b-HSD inhibitors were generated and experi-
mentally validated. The results of the validation run and more
experimental data from virtual hits of the models were then used
to evaluate them and to refine them. The final models had a higher
hit rate and better selectivity among 11b-HSD subtypes
[134,151,152].
3. Conclusion and perspectives

As shown by the variety of success stories published in the sci-
entific literature molecular modeling techniques have the ability to
support the drug development process at various stages. It is, how-
ever vital not to oversimplify the complex problems faced in drug
development. The meaningful application of computational mod-
els requires careful curating of datasets, extensive model valida-
tion, and thorough analysis and contextualization of
experimental results.

Even more, than in other CADD applications, SAR optimization
requires high-quality standards that we would like to sum up in
the following questions as a take-home message:

What is my target? Even though it seems redundant to stress
this, it is vital to thoroughly familiarize oneself with the available
literature on the target structure. Many studies suffer from poor
background reading which often leads to mistakes that could have
easily been avoided or the repetition of experiments that have
already been conducted by other groups. Different binding sites,
binding modes, and structural changes undergone by the protein
upon binding to different ligands are usually well described in
the publications related to the available structural data and can
help to select the right workflow for a lead optimization problem.

How do the biological test systems work? The test systems that
were and are used to gather activity data should be thoroughly
scrutinized. It is very common that the applied assay systems do
not directly reflect ligand/protein binding making it difficult to
use the generated data for the optimization of an in silico work-
flow. Especially when multiple different binding modes are possi-
ble it becomes key to determine how they can be experimentally
distinguished. It is also important to be aware of putative assay
interference, often caused by PAINS and other well-known promis-
cuous motifs.

How good is my data? This again is a less self-explanatory point
than one might think. The large amount of activity data collected in
public databases like the ChEMBL (ebi.ac.uk) tempts the user to use
automated scripts to create activity datasets for validation on the
fast track. However, this often leads to low data quality in the
set. Different assay types are mixed up andthey contain data that
is not representative for direct target ligand binding. Different
binding sites might not always be investigated separately and
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the intermixing of all these different types of data leads to contra-
dictions and in the end poor models. A smaller high-quality dataset
can lead to better results.

What are my software tools? There is a reason why non of the
many available software solutions for docking and pharmacophore
modeling has become dominant in the field. The success of algo-
rithms and SFs hinges largely on their suitability for a specific pro-
ject or target. Empirical SFs often outperform energy-based
functions, when they are applied to structures that are also repre-
sented in the dataset they are trained with they might, however,
fail if presented with a novel binding mode that is not sampled
in the training data. If available, use multiple different programs
and approaches and select the most suitable one in a thorough val-
idation process. While this takes time, it leads to more high-quality
simulations and results.

Is my workflow valid? Employ all available data to test and val-
idate your workflow. If simple validation strategies like re-docking
and cross-docking are performed, they vastly improve the reliabil-
ity of any predictions made by the workflow.

Can my workflow be refined? Adapt and refine your computa-
tional models as new data becomes available. Build a system to
learn from every compound that is tested. Build specialized SFs
for your specific compound class. Find relevant key interactions
and aim to elucidate the dominant binding orientation. In many
cases also automated approaches can be used to analyze vast
amounts of data and extract the relevant findings.

What else? Structure-based molecular modeling can be a very
powerful and valuable tool in lead optimization if it is used with
care and sound methodology. We hope the readers of this review
can use it to find the best way to employ molecular modeling tech-
niques in their own optimization projects.
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