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Over the last decade, for the first time, substantial efforts have been directed at the
development of dedicated in silico platforms for drug repurposing, including initiatives
targeting cancers and conditions as diverse as cryptosporidiosis, dengue, dental caries,
diabetes, herpes, lupus, malaria, tuberculosis and Covid-19 related respiratory disease.
This review outlines some of the exciting advances in the specific applications of in silico
approaches to the challenge of drug repurposing and focuses particularly on where these
efforts have resulted in the development of generic platform technologies of broad value
to researchers involved in programmatic drug repurposing work. Recent advances in
molecular docking methodologies and validation approaches, and their combination with
machine learning or deep learning approaches are continually enhancing the precision of
repurposing efforts. The meaningful integration of better understanding of molecular
mechanisms with molecular pathway data and knowledge of disease networks is widen-
ing the scope for discovery of repurposing opportunities. The power of Artificial
Intelligence is being gainfully exploited to advance progress in an integrated science that
extends from the sub-atomic to the whole system level. There are many promising emer-
ging developments but there are remaining challenges to be overcome in the successful
integration of the new advances in useful platforms. In conclusion, the essential compo-
nent requirements for development of powerful and well optimised drug repurposing
screening platforms are discussed.

Introduction
Drug repurposing possesses great advantages in terms of establishing new therapeutic options for spe-
cific disorders by exploiting drugs used for other conditions that are already known to be largely safe.
The specific advantages include leveraging pre-existing safety and clinical data to avoid lengthy Phase
I safety studies and therefore entering clinical trials at Phase IIa. This not only reduces development
times, and thus costs, but also removes some of the risks [1]
The notion of repurposing of existing drugs brings associated reservations for many too. There is

the concern that advances rely too much on serendipity and convenience. This is countered by the
acknowledgement that many of the recent repurposing successes, not least for the treatment of
Covid-19 [2], have come about due to trials based on extensive prior clinical observation of patients
receiving different drug treatments concurrently for other disorders. Indeed, trials often proceed on
the basis of straightforward clinical rationale or hunch.
Phenotypic drug discovery has in broad terms been highly successful. The process closely simulates

the normal physiological situation. It allows conception and testing of therapeutic relevance early in
the drug discovery process and does not require knowledge of the molecular mechanism of action.
However, modelling of more complex diseases is difficult. The chance of serendipitous discovery is
enhanced but there is a low chance of developing ‘best in class’ molecules and it is not possible to
utilise high technology platforms and so screening capacity is low [3].
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Target-based drug discovery incorporates a priori knowledge or elucidation of the mechanism of action, so
though the findings may not be as relevant to the physiological situation, there is a very high chance of devel-
oping ‘best in class’ molecules. Screening of vast chemical libraries and utilisation of high technology platforms
is feasible [3].
With repurposing, the reservations of molecular scientists are centred on the narrow coverage of chemical

space offered by the body of approved drug compounds; and the nagging feeling, and perhaps ultimately
certain logic, that repurposed drugs, by definition, cannot represent the best possible compound for the second-
ary therapeutic purpose, unless the pharmacological target receptors are the same or at least similar to those
engaged in the primary therapeutic purpose.
The field of the development and use of in silico repurposing drug screening platforms thereby lies at the

meeting point of these two sets of drivers — acknowledgement of the growing pressure for convenient new
therapies, being balanced by the need for maximal exploration and scrutiny of the potential alignment of the
predicted molecular interactions with those known to be needed for therapeutic efficacy. The challenge for plat-
form development is to firstly encompass and properly define the full and appropriate chemical and biological
space for a given set of drug–receptor interactions, and then secondly to target these interactions with the most
suitable computational algorithms that secure a practically meaningful indicator of drug efficacy. The recent
drug repurposing successes are in no doubt very encouraging developments, but lead us back to the challenge
of ensuring that we are not overly being driven by convenient selection of drug candidates for the purpose of
expediency at a particular time, rather than the proper objective of identification of the single best drug repur-
posing option at the molecular level.
This review will reflect on the development of in silico drug repurposing tools of recent years, focusing on

molecular docking challenges, network-based methodologies, systems that integrate complex information net-
works, and the development of generic platform technologies.

Development of in silico drug repurposing tools
A number of in silico tools have been developed to down-screen a field of potential candidate target molecules
and to discover novel targets [4]. Semantic mining has been applied in the development of the DReSMin (Drug
Repositioning Semantic Mining) system [5]. A small number of repurposing efforts have focused on physio-
logical responses, these methods normally utilising the side effect data from SIDER [6] as a primary source of
the known side effects. However, the main thrust of work in the realm of in silico drug repurposing is directed
at exploiting knowledge of molecular interactions and building robust frameworks for appropriate and validated
approaches while further expanding the underpinning knowledgebase.
High quality 3D protein structures can be obtained directly from the experimentally determined structures

of the Protein Databank [7,8] where applicable, and otherwise can be modelled by a range of established meth-
odologies that have advanced substantially in recent years, excellently reviewed by Kuhlman and Bradley [9].
The powerful neural network-driven protein structure predictions of AlphaFold and RoseTTAFold are exciting
advances [10,11]. The compound sets have to be appropriately extensive and the algorithms and computational
power sufficiently powerful. The primary chemical set, representing the ‘low-hanging fruit’ is the
FDA-approved drug set, just over 4200 compounds as of November, 2021, just over 2700 of which are approved
small molecule drugs, as listed in DrugBank [12].

Databases
Somewhat wider compound sets are sometimes used, such as the ReFRAME collection of 12 000 compounds
[13], a ‘best-in-class’ drug repurposing library containing nearly all small molecules that have reached clinical
development or undergone significant preclinical profiling. ReFRAME (Repurposing, Focused Rescue, and
Accelerated Medchem) that was assembled by combining three widely used commercial drug competitive intel-
ligence databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects), together with exten-
sive patent mining of small molecules that have been dosed in humans. The practical utility of this collection
was illustrated by its screening against Cryptosporidium spp., a major cause of childhood diarrhoea in the
developing world, and the resulting identification of two active compounds previously tested in humans for
other therapeutic indications, and subsequently shown to be efficacious at clinically relevant doses in animal
models of Cryptosporidium infection. An open-access data portal has been developed to share assayed screen
hits (https://reframedb.org).
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Pharmaceutical companies and start-ups have advanced drug discovery by extracting hitherto intractable pat-
terns from biomedical data [14]. IBM’s Watson Health platform searches vast volumes of textual data, includ-
ing laboratory data, clinical reports, and scientific publications [15].

Algorithms for identifying drug–target interactions
Drug discovery and repurposing is primarily based on identification of new drug–target interactions. Many
drugs are non-specific and show reactivity to additional targets besides their primary targets. Repurposing is
made simpler if accurate structural prediction of the drug targets can be achieved.
Experimental confirmation of interactions is expensive and lengthy, and the resources are best focussed

where there is the highest probability of success. This has underpinned the attraction of developing computa-
tional methods to predict potential drug–target interactions.
Wang et al. [16], developed ACID, a tool for drug repurposing using a consensus inverse docking strategy.

The computational protocol combines several significantly different types of free docking methodologies into a
consensus inverse docking (CID) scheme (i.e. different conformational search algorithm, different global and
local optimisers, and different scoring functions), namely AutoDock [17], AutoDock Vina [18], DOCK [19],
LEDOCK, PLANTS [20], and PSOVina [21] for binding pose search. The CID was optimised by use of collec-
tions of crystal complexes (from PDB-bind [22]) and binding data. Molecular Mechanics/Poisson–Boltzmann
Surface Area (MM/PBSA) and X-SCORE were used for the final binding energy calculation to avoid bias
towards the intrinsic scoring functions of the individual docking methodologies. The workflow demonstrated a
∼10% enhancement in posing accuracy and prediction of binding modes compared with previous best method,
which shows the benefit of well-constructed consensus methods. A web server — the auto in silico consensus
inverse docking (ACID) (http://chemyang.ccnu.edu.cn/ccb/server/ACID/) was designed based on this workflow,
incorporating the CID workflow program, the compound database of 2086 approved drugs with therapeutic
information and a known target database containing 831 protein structures covering 30 therapeutic areas.
The Computational Analysis of Novel Drug Repurposing Opportunities (CANDO) platform was developed

for shotgun multitarget drug discovery, repurposing, and design [23,24]. The platform screens and ranks the
approved drugs for every applicable disease/indication through large scale modelling and analysis of interac-
tions between comprehensive libraries of compounds and protein structures using hierarchical fragment-based
docking with dynamics, CANDOCK [25]. The comparison of drug-proteome signatures and ranking approach
yields benchmarking accuracies of 20–40% for ∼1500 indications relative to random control accuracies of

Figure 1. The Re-Drug screening platform user interface, showing the main views and functionalities and their synchronous

use.
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2–15%, when combined with in vitro validation studies. The 35% top ranking predictions had comparable or
better activity than existing drugs across ten indications, identifying novel repurposed therapies for conditions
such as dengue, dental caries, diabetes, herpes, lupus, malaria, and tuberculosis.

Combination of databases and drug–target interaction algorithms
The team of the author at Swansea have developed Re-Drug (Drug Repurposing Screening Platform), presented
to the Biochemical Society Drug Repurposing meeting in Birmingham, U.K. in November, 2019 [26]. Re-Drug
is a comprehensive Artificial Intelligence-based screening technology for the assessment of functionally feasible
on-target and off-target interactions of a candidate therapeutic drawn from the pool of ∼1400 FDA approved
drugs and screened for repositioning opportunities across more than 1400 known drug targets. This whole
system framework provides a systematic assessment of the candidate drug’s predicted behaviour based upon
comparison with the established mechanistic data (molecular binding and metabolic and signalling pathway
analysis via Reactome [27] and KEGG [28] for a broad range of currently used drugs, encompassing both drug
efficacy and potential toxicity. Based on extraction from docking data across the 1400 drug receptor targets,
interchangeable compounds with highly similar docking and pathway profiles are identified (Figure 1).
Multiple parameters of binding derived from docking simulations (including binding affinity, Van der Waals,

solvent accessible surface area, rotatable bond entropy, atom distances, and H bonds) are used as training data for
machine learning classifiers. A combination of docking methods is used (AutoDock Vina [29] and DOCK 6 [19]
(http://dock.compbio.ucsf.edu/) in order to capture the advantages of both empirical (affinity) and force field
(energy) approaches [18,19], and these consensus methods generate metascores with improved prediction accuracy.
For a drug of interest, the system reports known receptor targets, detailing the relevant pathways implicated,

and identifying by the machine learning applied to in silico docking data, the most functionally similar alterna-
tive compounds in terms of binding parameters, based on specific comparison with the interactions of the drug
of interest at those particular targets. Analysis of the indications and associated pathways of the implicated
alternative drugs reveals new potential therapeutic areas for the drug of interest.
A measure is also provided of the similarity of molecular docking profiles of the drug of interest across the

wider field of in silico docking data involving 1000+ receptor targets, allowing analysis of top-scoring new
targets and their established ligands. Protein–ligand interactions with highly similar binding parameters and
pathway profiles are predicted to be more highly functionally interchangeable and to present promising repur-
posing opportunities.

Molecular docking challenges
The challenge is that known drug–target interactions are relatively rare, and when the performance of predic-
tion is being assessed for drugs without relevant target interaction information, validation by comparison with
controls in the form of negative results samples is impossible because of the scarcity of experimentally verified
negative examples [30].
Much work has involved using convolutional neural network (CNN) models trained on 3D structural infor-

mation of protein–ligand complexes to distinguish binding from non-binding ligands for virtual screening. The
paucity of reliable protein–ligand X-ray structures and binding affinity data has driven the generation of con-
structed datasets for the training and evaluation of neural net molecular recognition models, established sets of
actives and decoys for benchmarking and training.
Decoy libraries may be used, such as the Directory of Useful Decoys Enchanced (DUD-E) that has often

been used as a primary training set [31]. DUD-E is a benchmark comprised of 102 protein targets with active
molecules and decoy data. The active-decoys ratio per target on DUD-E varies and mimics a real screening
scenario in drug discovery; though for some targets only a few active molecules are available (as low as 40)
while the number of decoys may be as high as 30 000. Therefore, though testing learning models on DUD-E
may reveal the usefulness of the models in real virtual screening experiments, there is inherent bias, meaning
that methods often reflect these biases in separation of actives and decoys, and do not necessarily learn to
perform molecular recognition.
Chen et al. [32] investigated sources of bias in DUD-E to assess whether CNN models developed using

DUD-E are properly learning the underlying physics that drives molecular recognition, or are instead reflecting
biases inherent in the dataset itself, and found that superior enrichment efficiency in CNN models can be
attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalisation of
the pattern of protein–ligand interactions. Comparing deep learning models trained on PDBbind datasets, they
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found that enrichment performance using DUD-E was similar to that obtained just using AutoDock Vina, sug-
gesting caution in applying constructed datasets to machine learning based methodology development. This
fundamental issue hinders virtual screening method development.
A potential way forward is to filter DUD-E decoy sets and reduce reliance on a single source of decoys. This

can be done by cross-referencing with the binding data (i.e. Ki, Kd, IC50, and ΔG) of ligands of each protein
target from chemical databases such as ChEMBL [33]. Compounds with affinities higher than 1.0 mM are con-
sidered active while any compounds with no measurable affinity up to 30 mM can be classified as experimental
decoys. Decoy libraries can be generated from the ZINC database [34]. For each ligand the major protonation
states were calculated and the molecular weight (MW), lipophilicity (AlogP), the number of hydrogen bond
donors (HBD) and acceptors (HBA), number of rotatable bonds (nRotb) and net charges can be calculated.
For each state, a set of property-matched decoys can then be generated. Similarity analysis can be conducted
using Extended Connectivity Fingerprints 6 (ECFP6) fingerprints and the most dissimilar decoys retained and
duplicates removed. ECFP6 and FCFP6 fingerprints can be generated using the RDKit cheminformatics plat-
form (http://www.rdkit.org) module.
A deep learning method (DeepCoy) has been developed that generates decoys to a user’s preferred specifica-

tion in order to remove such biases or construct sets with a defined bias [35]. DeepCoy was validated using
two established benchmarks, DUD-E and DEKOIS 2.0. The generated decoy molecules more closely matched
the active molecules’ physicochemical properties while introducing no additional risk of false negatives.

Network-based methodologies
Many methods for predicting potential drug–target interactions use a network representation. Network-based
models are particularly suited to addressing this type of problem as they focus on interactions between separate
data types, in this case, an interaction network can be constructed where nodes represent drugs and targets,
and edges denote interactions. The interactions are derived from associations that may be pharmacological,
clinical or molecular.
Network-based methodologies have been directed at screening of potential new indications of those

FDA-approved drugs with well-characterised pharmacokinetics and pharmacodynamics and known safety and
tolerability profiles by exploiting the known relationships between drug targets and diseases [36–38]. MFM
(method of functional modules) approaches targeting breast, prostate, and leukaemia cancers [39] have been
developed using resources such as the Functional Linkage Network, a drug response expression data set (The
Library of Integrated Network-Based Cellular Signatures (LINCS) profiles) [40], CMap [41], DrugBank [12],
OMIM [42], GEO [43], and The Cancer Genome Atlas (TCGA) portal [44].
The network of drug–target interactions can be extended by overlaying knowledge of protein–protein simi-

larity and drug–drug similarity, resulting in powerful clustering methodologies that outperform the earlier
models. If a given drug has known targets, other candidate targets can be ranked by measuring the structural
similarity between them and the known targets. Similarly, drug analogy can be considered, the potential targets
of the given drug are selected based on the target information of similar drugs. In this regard, the work of
Yamanishi et al. [45] has demonstrated that if two drugs have similar structure, the chances of interaction with
similar target proteins will be higher; and that two target proteins with high sequence similarity are more likely
to interact with similar drugs. This approach can also widen the pool of negative controls.
For many in the field, chemical structures are compared in high throughput to find exact and similar

matches and similar matches using packages such as Open Babel [46]. Similarity analysis consists of comparing
the number of structural features shared between a reference molecule and test molecules in a database [47,48].
The degree of similarity between structures is calculated using a metric that considers how close or far a test
molecule is to the reference set [48,49].
The SIMCOMP method is the main similarity measurement used in the Yamanishi studies, however, it can

only be used for compounds which contain a KEGG database reference. Fingerprinting is therefore used more
widely. For similarity searches on compound fingerprints, such as the PubChem and MACCS fingerprint formats,
or the ECFP6 fingerprints, the most commonly used similarity metric is still the Tanimoto coefficient [47],
despite its simplicity and limitations, such as the dependence on the size of the molecules and not considering
the frequency of the features in the molecules under analysis [48–50].
Protein similarity is determined by comparison of amino acid sequences using methods such as the Smith

and Waterman algorithm, developed in 1981 to perform local sequence alignment, which give high scores for
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matching amino acid strings while penalising mismatches in sequence and length. The motivation behind these
algorithms is to provide an alternative to comparing the entire protein sequence, instead focusing on the com-
parison of specific regions which can be of varying length to detect regions of the protein which are similar.
These similar regions are more synonymous with similar functional domains. The Basic Local Alignment
Search Tool (BLAST) [51] is the most widely used similarity tool. It is an open source heuristic algorithm
developed by NCBI which generates a partially filled similarity matrix of high scoring matches. BLAST is a
very powerful tool, and considered to be more efficient in terms of computation time and resource usage,
however at a cost of thoroughness as BLAST will not score or report patterns which are more difficult to
detect, that is those at more remote homology, which can often be the case when comparing human proteins
that may be very different in sequence, even in global fold, but bind the same ligand.
Deep Learning Methods for Drug–Target Interaction Prediction encompass studies that predict compound

properties [52,53]; target prediction for existing drugs, such as reverse docking simulation [54]; text mining
approaches [55], literature-based medical knowledge graph methods [56], and drug binding using molecular
dynamics simulation [57–59]. Deep learning has shown better performance than classic machine learning
methods in repurposing of antibiotics [60] and more widely [61].

Systems that integrate complex information in COVID-19
drug repurposing
Researchers are increasingly realising the scope of integrating the different tiers of knowledge of the complex
networks connecting drugs, targets, and diseases within in silico pipelines. The Covid-19 pandemic has served
as a great driver of innovation, due to the pressing need for new routes to development of prevention and treat-
ment strategies, by prioritisation of existing drugs for expedition to therapeutic development for COVID-19.
Zeng et al. [62] built on their work on the FDA-approved drug set and developed a highly integrative network-
based deep-learning framework, CoV-KGE, that employed a comprehensive knowledge graph including 15
million edges encompassing 39 relationship types linking drugs, diseases, proteins and genes, pathways, and
expression from 24 million PubMed publications to identify repurposable drugs for COVID-19 (termed
CoV-KGE). The framework identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosa-
mide, and toremifene) whose therapeutic associations with COVID-19 were validated by data from ongoing
clinical trials, transcriptomic and proteomics data in SARS-CoV-2-infected human cells [62]. This demonstrates
highly effective use of a powerful deep-learning methodology.
Dexamethasone, an approved glucocorticoid, prescribed for a diverse range of inflammatory and auto-

immune conditions, was identified as a prime candidate for repurposing by CoV-KGE. The subsequent rando-
mised COVID-19 therapy trial indicated that dexamethasone reduced death by a fifth in individuals requiring
oxygen but not invasive mechanical ventilation, and by a third for more seriously ill patients who required
invasive mechanical ventilation [63].
Sosa et al. [56] implemented a medical knowledge graph containing information from the biomedical litera-

ture relating to drugs, diseases, genes, and proteins and predicted links between drugs and diseases using graph
embedding techniques. A knowledge graph developed by BenevolentAI forms a large repository of structured
medical information, with machine learning used to extract connections from the scientific literature. In this
way, a drug routinely used to treat rheumatoid arthritis, Baricitinib, that works through inhibition of
AP2-associated protein kinase 1, was identified as a potential treatment for COVID-19 [64].
A network-based methodology that focuses on the virus–host interactome and related human drug targets

was applied to drugs that could be repurposed and implicated 16 candidates for potential treatment of
COVID-19 [65], including as a top candidate, toremifene, a first-generation non-steroidal selective oestrogenic
receptor modulator approved for the treatment of breast cancer. In vitro work demonstrated that micromolar
concentrations of toremifene blocked a range of viral infections, including Middle East Respiratory Syndrome
coronavirus (MERS), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2 [66]. Beck
et al. [67] developed ‘Molecule Transformer-Drug Target Interaction’ to ascertain whether any already available
antiviral drugs could be potentially effective against SARS-CoV-2 infection and identified five, namely atazana-
vir, dolutegravir, efavirenz, remdesivir and ritonavir . Machine learning and statistical analysis approaches were
used as part of the discovery that a poly-ADP-ribose polymerase 1 inhibitor, mefuparib (CVL218), blocked
SARS-CoV-2 replication [68]. A network-based approach indicated that a combination of melatonin and tore-
mifene held potential for use in the treatment of COVID-19 [69].
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Network-based prediction of drug–target interaction has been shown to improve existing association predic-
tion methods for measuring the topological similarities of bipartite (drug and target networks), extended to tri-
partite linked networks (drug, target, and disease networks) [59,70–72]. Zong et al. [55] employed tripartite
networks through the DeepWalk method [73] to identify topology-based similarities, and revealed the potential
of this method as a drug repurposing solution.
The advantage of these whole system approaches is that they can be used to address questions from the start-

ing point of the drug of interest, the protein target of interest, the mechanism of disease or the disease itself,

Table 1 Computational tools used in drug repurposing

Tool Database
Molecular docking/drug–target
interaction Platform

ksRepo [4] ✓

DReSMin [5] ✓

SIDER [6] ✓

DrugBank [12] ✓

ReFRAME [13] ✓

ACID [16] ✓

AutoDock4/AutoDockTools4 [17] ✓

AutoDock Vina [18] ✓

DOCK 6 [19] ✓

PLANTS [20] ✓

PSOVina [21] ✓

CANDO [23,24] ✓

CANDOCK [25] ✓

Re-Drug [26] ✓ ✓ ✓

Reactome [27] ✓

KEGG [28] ✓

AutoDock Vina 1.2.0 [29] ✓

DUD-E [31] ✓

ChEMBL [33] ✓

ZINC [34] ✓

RDKit ✓

DeepCoy [35] ✓

MFM [39] ✓

LINCS [40] ✓

CMap [41] ✓

OMIM [42] ✓

GEO [43] ✓

TCGA [44] ✓

OpenBabel [46] ✓

CoV-KGE [62] ✓ ✓

BenevolentAI [64] ✓ ✓

Molecule Transformer-Drug Target Interaction [67] ✓

DeepWalk [73] ✓

L1000FWD [74] ✓ ✓

L1000CDS2 ✓ ✓
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such as; (i) Repositioning approved drugs for new targets of interest; (ii) Identification of combinations of
downstream pathway events and therapeutic actions for repositioning of drugs targeting multiple sites and
effects; (iii) Identification of other marketed drugs with similar pharmacological profiles to that of a drug cur-
rently prescribed for a specific indication; (iv) Opportunities for ‘therapeutic switching’ by prediction of clinical
effects of repurposed drug candidates based on the well characterised in vivo effects of drugs with similar
profiles.

Polypharmacology
Instances of polypharmacology, where one drug is known to have multiple protein targets, i.e. many therapeutic
small molecules that by their nature have a broader protein binding site specificity, serve as a natural founda-
tion for further drug repurposing. Large-scale databases have been accumulated in recent years, such as the
next-generation L1000-based Connectivity Map (CMap), a transcriptome database collecting gene-expression
profiles of drug-treated human cancer cells (https://portals.broadinstitute.org/cmap/), mostly focussed on the
FDA-approved drugs, and subsequently integrated in an analytic Web platform, the L1000FWD, for systematic
analyses of polypharmacology and drug repurposing [74]; and L1000CDS2 (https://maayanlab.cloud/
L1000CDS2). For L1000FWD, two different classes of anti-cancer drugs provided proof-of-concept examples,
namely histone deacetylase (HDAC) inhibitors and topoisomerase inhibitors. The study identified KM-00927
and BRD-K75081836 as novel HDAC inhibitors and mitomycin C as a topoisomerase IIB inhibitor. This is an
excellent example of researchers integrating freely available public resources in systematic polypharmacology
analysis and drug repurposing platform development.
The wealth of computational tools reviewed in this paper are detailed in Table 1, categorised according to

whether they are primarily database tools, tools focused on molecular docking and/or drug–target interaction,
platforms or a combination.

Platform requirements
In conclusion, the component requirements for development of powerful and well optimised drug repurposing
screening platforms, that are the best possible representation of what can be achieved in the 2020’s and on into

Figure 2. Systems approach drug repurposing screening platform, showing the main components and processes and

their integration, underpinned by continuing algorithmic development, AI and ever increasing processing power.
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the second quarter of the century, will include: (i) Relevant and ‘clean’ compound and protein structure data
sets providing the most generic applicability possible; (ii) Selection of the most suitable and advanced molecu-
lar docking methodologies combined with machine learning or deep learning approaches that are continually
validated and their performance meaningfully benchmarked against clinical and experimental data;
(iii) Integration of metabolic and signalling pathway data and disease networks, such as into tripartite linked
networks (drug/target/disease networks); (iv) Selection of the best AI algorithms; all incorporated within a
dedicated systems model (Figure 2).
Looking forward, the burgeoning rate of current advance in applicable network-based and deep learning

algorithm development [75–80] bodes well for better identification of repurposing opportunities. The challenge
is to combine sufficiently technically robust approaches that are availed of the substantial advances in AI and
network medicine, with the most appropriate selection of protocols and input training parameters.
Another big challenge to rise to is that we ensure that these components are fully and seamlessly integrated

within functional, usable web-based platforms that are accessible to a wide population of researchers with little
prior understanding or expertise in algorithm or platform development but who are seeking to acquire rapid
knowledge relating to a specific repurposing possibility or even just seeking to prospectively view the field of
potential opportunity. Technically simple, but rarely done properly, this is most vital if we are to leverage
maximal benefit from the approved drugs that are readily available to better treat human disease.

Perspectives
• The field of development and use of in silico drug repurposing screening platforms lies at the

meeting point of two sets of drivers — (i) acknowledgement of the growing pressure for con-
venient new therapies, being balanced by (ii) the need for maximal exploration and scrutiny of
the potential alignment of the predicted molecular interactions with those known to be
needed for therapeutic efficacy.

• Recent advances in algorithm development and artificial intelligence have shown great
promise in identifying real-world repurposing opportunities and researchers are successfully
integrating different types of data, such as that pertaining to metabolic and signalling pathway
data and disease mechanisms, into linked networks.

• There will be a movement towards systems approach-based platform development that will
yield powerful and generically applicable technology solutions dedicated to the unique chal-
lenge of drug repurposing.
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